These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31102757)

  • 1. High temperature-induced proteomic and metabolomic profiles of a thermophilic Bacillus manusensis isolated from the deep-sea hydrothermal field of Manus Basin.
    Sun QL; Sun YY; Zhang J; Luan ZD; Lian C; Liu SQ; Yu C
    J Proteomics; 2019 Jul; 203():103380. PubMed ID: 31102757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-element stable isotope geochemistry and arsenic speciation of hydrothermal vent fauna (Alviniconcha sp., Ifremeria nautilei and Eochionelasmus ohtai manusensis), Manus Basin, Papua New Guinea.
    Bojar AV; Lécuyer C; Maher W; Bojar HP; Fourel F; Vasile Ş
    Chemosphere; 2023 May; 324():138258. PubMed ID: 36898438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Population structure of
    Thaler AD; Saleu W; Carlsson J; Schultz TF; Van Dover CL
    PeerJ; 2017; 5():e3655. PubMed ID: 28852590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Levensteiniella manusensis sp. nov., a new polychaete species (Annelida: Polynoidae) from deep-sea hydrothermal vents in the Manus Back-Arc Basin, Western Pacific.
    Wu X; Xu K
    Zootaxa; 2018 Feb; 4388(1):102-110. PubMed ID: 29690467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the Metabolomic Responses of
    Dong Z; Chen X; Cai K; Chen Z; Wang H; Jin P; Liu X; Permaul K; Singh S; Wang Z
    J Microbiol Biotechnol; 2018 Mar; 28(3):473-481. PubMed ID: 29539884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The survival mechanisms of thermophiles at high temperatures: an angle of omics.
    Wang Q; Cen Z; Zhao J
    Physiology (Bethesda); 2015 Mar; 30(2):97-106. PubMed ID: 25729055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marinitoga lauensis sp. nov., a novel deep-sea hydrothermal vent thermophilic anaerobic heterotroph with a prophage.
    L'Haridon S; Gouhier L; John ES; Reysenbach AL
    Syst Appl Microbiol; 2019 May; 42(3):343-347. PubMed ID: 30948139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermophilic hydrogen-producing bacteria inhabiting deep-sea hydrothermal environments represented by Caloranaerobacter.
    Jiang L; Xu H; Zeng X; Wu X; Long M; Shao Z
    Res Microbiol; 2015 Nov; 166(9):677-87. PubMed ID: 26026841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome sequence of Bacillus sp. CHD6a, isolated from the shallow-sea hydrothermal vent.
    Lin W; Chen H; Chen Q; Liu Y; Jiao N; Zheng Q
    Mar Genomics; 2016 Feb; 25():15-16. PubMed ID: 26508672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two novel bacteriophages of thermophilic bacteria isolated from deep-sea hydrothermal fields.
    Liu B; Wu S; Song Q; Zhang X; Xie L
    Curr Microbiol; 2006 Aug; 53(2):163-6. PubMed ID: 16845565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-thermodynamic factors affect competition between thermophilic chemolithoautotrophs from deep-sea hydrothermal vents.
    Kubik BC; Holden JF
    Appl Environ Microbiol; 2024 Jul; ():e0029224. PubMed ID: 39012100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacillus alveayuensis sp. nov., a thermophilic bacterium isolated from deep-sea sediments of the Ayu Trough.
    Bae SS; Lee JH; Kim SJ
    Int J Syst Evol Microbiol; 2005 May; 55(Pt 3):1211-1215. PubMed ID: 15879257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the Genome Feature and Toxic Capacity of a
    Zhao Y; Chen C; Gu HJ; Zhang J; Sun L
    Front Cell Infect Microbiol; 2019; 9():370. PubMed ID: 31750261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacillus vulcani sp. nov., a novel thermophilic species isolated from a shallow marine hydrothermal vent.
    Caccamo D; Gugliandolo C; Stackebrandt E; Maugeri TL
    Int J Syst Evol Microbiol; 2000 Nov; 50 Pt 6():2009-2012. PubMed ID: 11155974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacillus iocasae sp. nov., isolated from Pacmanus hydrothermal field, Manus Basin.
    Wang HL; Zhang J; Sun L
    Int J Syst Evol Microbiol; 2017 Sep; 67(9):3547-3552. PubMed ID: 28866991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic analysis of the thermophilic methylotroph Bacillus methanolicus MGA3.
    Müller JE; Litsanov B; Bortfeld-Miller M; Trachsel C; Grossmann J; Brautaset T; Vorholt JA
    Proteomics; 2014 Mar; 14(6):725-37. PubMed ID: 24452867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolomic and proteomic analysis of D-lactate-producing Lactobacillus delbrueckii under various fermentation conditions.
    Liang S; Gao D; Liu H; Wang C; Wen J
    J Ind Microbiol Biotechnol; 2018 Aug; 45(8):681-696. PubMed ID: 29808292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomic analysis reveals insights into deep-sea adaptations of the dominant species, Shinkaia crosnieri (Crustacea: Decapoda: Anomura), inhabiting both hydrothermal vents and cold seeps.
    Cheng J; Hui M; Sha Z
    BMC Genomics; 2019 May; 20(1):388. PubMed ID: 31103028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum Thermotogae.
    Pollo SM; Zhaxybayeva O; Nesbø CL
    Can J Microbiol; 2015 Sep; 61(9):655-70. PubMed ID: 26211682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global-warming-caused changes of temperature and oxygen alter the proteomic profile of sea cucumber Apostichopus japonicus.
    Huo D; Sun L; Zhang L; Ru X; Liu S; Yang X; Yang H
    J Proteomics; 2019 Feb; 193():27-43. PubMed ID: 30579964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.