BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31102851)

  • 1. Combination of active behaviors and passive structures contributes to the cleanliness of housefly wing surfaces: A new insight for the design of cleaning materials.
    Wan Q; Li H; Zhang S; Wang C; Su S; Long S; Pan B
    Colloids Surf B Biointerfaces; 2019 Aug; 180():473-480. PubMed ID: 31102851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the Role of Habitat on the Wettability of Cicada Wings.
    Oh J; Dana CE; Hong S; Román JK; Jo KD; Hong JW; Nguyen J; Cropek DM; Alleyne M; Miljkovic N
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):27173-27184. PubMed ID: 28719187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial variations and temporal metastability of the self-cleaning and superhydrophobic properties of damselfly wings.
    Hasan J; Webb HK; Truong VK; Watson GS; Watson JA; Tobin MJ; Gervinskas G; Juodkazis S; Wang JY; Crawford RJ; Ivanova EP
    Langmuir; 2012 Dec; 28(50):17404-9. PubMed ID: 23181510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of cuticle nanostructuring on the wetting behaviour/states on cicada wings.
    Sun M; Liang A; Watson GS; Watson JA; Zheng Y; Ju J; Jiang L
    PLoS One; 2012; 7(4):e35056. PubMed ID: 22536351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures.
    Mishra H; Schrader AM; Lee DW; Gallo A; Chen SY; Kaufman Y; Das S; Israelachvili JN
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8168-74. PubMed ID: 26709928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinspired surfaces with special wettability.
    Sun T; Feng L; Gao X; Jiang L
    Acc Chem Res; 2005 Aug; 38(8):644-52. PubMed ID: 16104687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE
    Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The wetting behavior of three different types of aqueous surfactant solutions on housefly (Musca domestica) surfaces.
    Wan Q; Zhao J; Li H; Li H; Wang C; Pan B
    Pest Manag Sci; 2020 Mar; 76(3):1085-1093. PubMed ID: 31525272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antifungal versus antibacterial defence of insect wings.
    Ivanova EP; Linklater DP; Aburto-Medina A; Le P; Baulin VA; Khuong Duy Nguyen H; Curtain R; Hanssen E; Gervinskas G; Hock Ng S; Khanh Truong V; Luque P; Ramm G; Wösten HAB; Crawford RJ; Juodkazis S; Maclaughlin S
    J Colloid Interface Sci; 2021 Dec; 603():886-897. PubMed ID: 34265480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces.
    Cortese B; D'Amone S; Manca M; Viola I; Cingolani R; Gigli G
    Langmuir; 2008 Mar; 24(6):2712-8. PubMed ID: 18217778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials.
    Park CI; Jeong HE; Lee SH; Cho HS; Suh KY
    J Colloid Interface Sci; 2009 Aug; 336(1):298-303. PubMed ID: 19426991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate.
    Wisdom KM; Watson JA; Qu X; Liu F; Watson GS; Chen CH
    Proc Natl Acad Sci U S A; 2013 May; 110(20):7992-7. PubMed ID: 23630277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale effect of hierarchical self-assembled nanostructures on superhydrophobic surface.
    Passoni L; Bonvini G; Luzio A; Facibeni A; Bottani CE; Di Fonzo F
    Langmuir; 2014 Nov; 30(45):13581-7. PubMed ID: 25346328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible Self-Cleaning Broadband Antireflective Film Inspired by the Transparent Cicada Wings.
    Han Z; Wang Z; Li B; Feng X; Jiao Z; Zhang J; Zhao J; Niu S; Ren L
    ACS Appl Mater Interfaces; 2019 May; 11(18):17019-17027. PubMed ID: 30993966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How micro/nanoarchitecture facilitates anti-wetting: an elegant hierarchical design on the termite wing.
    Watson GS; Cribb BW; Watson JA
    ACS Nano; 2010 Jan; 4(1):129-36. PubMed ID: 20099910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow.
    Bixler GD; Bhushan B
    Nanoscale; 2014 Jan; 6(1):76-96. PubMed ID: 24212921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Photon Polymerization of Butterfly Wing Scale Inspired Surfaces with Anisotropic Wettability.
    Ren Z; Yang Z; Srinivasaraghavan Govindarajan R; Madiyar F; Cheng M; Kim D; Jiang Y
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):9362-9370. PubMed ID: 38324407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual role of outer epicuticular lipids in determining the wettability of dragonfly wings.
    Nguyen SH; Webb HK; Hasan J; Tobin MJ; Crawford RJ; Ivanova EP
    Colloids Surf B Biointerfaces; 2013 Jun; 106():126-34. PubMed ID: 23434701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-cleaning efficiency of artificial superhydrophobic surfaces.
    Bhushan B; Jung YC; Koch K
    Langmuir; 2009 Mar; 25(5):3240-8. PubMed ID: 19239196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.