These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 31102866)
1. Effect of anions species on copper removal from wastewater by using mechanically activated calcium carbonate. Wen T; Zhao Y; Zhang T; Xiong B; Hu H; Zhang Q; Song S Chemosphere; 2019 Sep; 230():127-135. PubMed ID: 31102866 [TBL] [Abstract][Full Text] [Related]
2. Removal of Cu(II) from wastewater by using mechanochemically activated carbonate-based tailings through chemical precipitation. Xiong B; Zhang T; Zhao Y; Wen T; Zhang Q; Bao S; Song S Environ Sci Pollut Res Int; 2019 Dec; 26(34):35198-35207. PubMed ID: 31696424 [TBL] [Abstract][Full Text] [Related]
3. Selective recovery of heavy metals from wastewater by mechanically activated calcium carbonate: Inspiration from nature. Wen T; Zhao Y; Zhang T; Xiong B; Hu H; Zhang Q; Song S Chemosphere; 2020 May; 246():125842. PubMed ID: 31927387 [TBL] [Abstract][Full Text] [Related]
4. Efficient removal of copper from wastewater by using mechanically activated calcium carbonate. Hu H; Li X; Huang P; Zhang Q; Yuan W J Environ Manage; 2017 Dec; 203(Pt 1):1-7. PubMed ID: 28778001 [TBL] [Abstract][Full Text] [Related]
5. Insights into removal of tetracycline by persulfate activation with peanut shell biochar coupled with amorphous Cu-doped FeOOH composite in aqueous solution. Xu J; Zhang X; Sun C; Wan J; He H; Wang F; Dai Y; Yang S; Lin Y; Zhan X Environ Sci Pollut Res Int; 2019 Jan; 26(3):2820-2834. PubMed ID: 30488247 [TBL] [Abstract][Full Text] [Related]
6. A comprehensive and molecular level evaluation of treated wastewater reusing via drip systems: Interactions of dissolved ions and hydraulic shear stresses on calcium carbonate scaling. Shen Y; Zhou B; Puig-Bargués J; Xiao Y; Liu W; Si B; Li Y Chemosphere; 2024 Jun; 357():142071. PubMed ID: 38641290 [TBL] [Abstract][Full Text] [Related]
7. Applications and characteristics of Fe-Mn binary oxides for Sb(V) removal in textile wastewater: Selective adsorption and the fixed-bed column study. Yang K; Liu Y; Li Y; Cao Z; Zhou C; Wang Z; Zhou X; Baig SA; Xu X Chemosphere; 2019 Oct; 232():254-263. PubMed ID: 31154186 [TBL] [Abstract][Full Text] [Related]
8. Turning calcium carbonate into a cost-effective wastewater-sorbing material by occluding waste dye. Zhao DH; Gao HW Environ Sci Pollut Res Int; 2010 Jan; 17(1):97-105. PubMed ID: 19263103 [TBL] [Abstract][Full Text] [Related]
9. Treatment of refractory organics in strongly alkaline dinitrodiazophenol wastewater with microwave irradiation-activated persulfate. Wang F; Wu C; Li Q Chemosphere; 2020 Sep; 254():126773. PubMed ID: 32334249 [TBL] [Abstract][Full Text] [Related]
11. Characterization of primary precipitate composition formed during co-removal of Cr(VI) with Cu(II) in synthetic wastewater. Sun JM; Zhu WT; Huang JC Environ Sci Pollut Res Int; 2006 Oct; 13(6):379-85. PubMed ID: 17120827 [TBL] [Abstract][Full Text] [Related]
12. Phosphorus removal from wastewater using eggshell ash. Torit J; Phihusut D Environ Sci Pollut Res Int; 2019 Nov; 26(33):34101-34109. PubMed ID: 30276697 [TBL] [Abstract][Full Text] [Related]
13. Mechanically activated calcium carbonate and zero-valent iron composites for one-step treatment of multiple pollutants. Hu Y; Gu W; Hu H; Li X; Zhang Q Environ Sci Pollut Res Int; 2022 Apr; 29(18):27421-27429. PubMed ID: 34981379 [TBL] [Abstract][Full Text] [Related]
14. The utilization of waste by-products for removing silicate from mineral processing wastewater via chemical precipitation. Kang J; Sun W; Hu Y; Gao Z; Liu R; Zhang Q; Liu H; Meng X Water Res; 2017 Nov; 125():318-324. PubMed ID: 28869882 [TBL] [Abstract][Full Text] [Related]
15. Co-removal of hexavalent chromium during copper precipitation. Sun J; Huang JC Water Sci Technol; 2002; 46(4-5):413-9. PubMed ID: 12361041 [TBL] [Abstract][Full Text] [Related]
16. Arsenic removal from highly-acidic wastewater with high arsenic content by copper-chloride synergistic reduction. Wang A; Zhou K; Zhang X; Zhou D; Peng C; Chen W Chemosphere; 2020 Jan; 238():124675. PubMed ID: 31524615 [TBL] [Abstract][Full Text] [Related]
17. Study of kinetic and fixed bed operation of removal of sulfate anions from an industrial wastewater by an anion exchange resin. Haghsheno R; Mohebbi A; Hashemipour H; Sarrafi A J Hazard Mater; 2009 Jul; 166(2-3):961-6. PubMed ID: 19135783 [TBL] [Abstract][Full Text] [Related]
18. Removal of copper from water using limestone filtration technique. Determination of mechanism of removal. Aziz HA; Othman N; Yusuff MS; Basri DR; Ashaari FA; Adlan MN; Othman F; Johari M; Perwira M Environ Int; 2001 May; 26(5-6):395-9. PubMed ID: 11392757 [TBL] [Abstract][Full Text] [Related]
19. Sulfate removal from waste chemicals by precipitation. Benatti CT; Tavares CR; Lenzi E J Environ Manage; 2009 Jan; 90(1):504-11. PubMed ID: 18222593 [TBL] [Abstract][Full Text] [Related]
20. Adsorption of copper (II) and cadmium (II) ions by in situ doped nano-calcium carbonate high-intensity chitin hydrogels. Dou D; Wei D; Guan X; Liang Z; Lan L; Lan X; Liu P; Mo H; Lan P J Hazard Mater; 2022 Feb; 423(Pt B):127137. PubMed ID: 34560486 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]