These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
617 related articles for article (PubMed ID: 31103047)
1. Enhanced protopanaxadiol production from xylose by engineered Yarrowia lipolytica. Wu Y; Xu S; Gao X; Li M; Li D; Lu W Microb Cell Fact; 2019 May; 18(1):83. PubMed ID: 31103047 [TBL] [Abstract][Full Text] [Related]
2. Engineering Saccharomyces cerevisiae for Enhanced Production of Protopanaxadiol with Cofermentation of Glucose and Xylose. Gao X; Caiyin Q; Zhao F; Wu Y; Lu W J Agric Food Chem; 2018 Nov; 66(45):12009-12016. PubMed ID: 30350965 [TBL] [Abstract][Full Text] [Related]
3. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica. Ryu S; Trinh CT Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499 [TBL] [Abstract][Full Text] [Related]
4. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. Lee SH; Kodaki T; Park YC; Seo JH J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927 [TBL] [Abstract][Full Text] [Related]
5. Engineering oleaginous yeast Yarrowia lipolytica for enhanced limonene production from xylose and lignocellulosic hydrolysate. Yao F; Liu SC; Wang DN; Liu ZJ; Hua Q; Wei LJ FEMS Yeast Res; 2020 Sep; 20(6):. PubMed ID: 32840573 [TBL] [Abstract][Full Text] [Related]
6. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis. Kim SR; Kwee NR; Kim H; Jin YS FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717 [TBL] [Abstract][Full Text] [Related]
7. Metabolic engineering of Yarrowia lipolytica to produce chemicals and fuels from xylose. Ledesma-Amaro R; Lazar Z; Rakicka M; Guo Z; Fouchard F; Coq AC; Nicaud JM Metab Eng; 2016 Nov; 38():115-124. PubMed ID: 27396355 [TBL] [Abstract][Full Text] [Related]
8. Enabling xylose utilization in Yarrowia lipolytica for lipid production. Li H; Alper HS Biotechnol J; 2016 Sep; 11(9):1230-40. PubMed ID: 27367454 [TBL] [Abstract][Full Text] [Related]
9. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100 [TBL] [Abstract][Full Text] [Related]
10. Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae. Krahulec S; Klimacek M; Nidetzky B J Biotechnol; 2012 Apr; 158(4):192-202. PubMed ID: 21903144 [TBL] [Abstract][Full Text] [Related]
11. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. Zhang GC; Turner TL; Jin YS J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721 [TBL] [Abstract][Full Text] [Related]
12. Yarrowia lipolytica construction for heterologous synthesis of α-santalene and fermentation optimization. Jia D; Xu S; Sun J; Zhang C; Li D; Lu W Appl Microbiol Biotechnol; 2019 Apr; 103(8):3511-3520. PubMed ID: 30863877 [TBL] [Abstract][Full Text] [Related]
13. Different transcriptional responses of haploid and diploid S. cerevisiae strains to changes in cofactor preference of XR. Xie CY; Yang BX; Song QR; Xia ZY; Gou M; Tang YQ Microb Cell Fact; 2020 Nov; 19(1):211. PubMed ID: 33187525 [TBL] [Abstract][Full Text] [Related]
14. Lipid production from lignocellulosic biomass using an engineered Yarrowia lipolytica strain. Drzymała-Kapinos K; Mirończuk AM; Dobrowolski A Microb Cell Fact; 2022 Oct; 21(1):226. PubMed ID: 36307797 [TBL] [Abstract][Full Text] [Related]
15. Combination of a Push-Pull-Block Strategy with a Heterologous Xylose Assimilation Pathway toward Lipid Overproduction from Lignocellulose in Sun T; Yu Y; Wang L; Qi Y; Xu T; Wang Z; Lin L; Ledesma-Amaro R; Ji XJ ACS Synth Biol; 2023 Mar; 12(3):761-767. PubMed ID: 36789673 [TBL] [Abstract][Full Text] [Related]
16. Rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via the NADP(H)-preferring xylose reductase-xylitol dehydrogenase pathway. Zhang J; Zhang B; Wang D; Gao X; Sun L; Hong J Metab Eng; 2015 Sep; 31():140-52. PubMed ID: 26253204 [TBL] [Abstract][Full Text] [Related]
17. A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica. Lu Y; Yang Q; Lin Z; Yang X Microb Cell Fact; 2020 Feb; 19(1):49. PubMed ID: 32103761 [TBL] [Abstract][Full Text] [Related]
18. Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose. Hou J; Qiu C; Shen Y; Li H; Bao X FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582494 [TBL] [Abstract][Full Text] [Related]
19. Bioproduction of succinic acid from xylose by engineered Prabhu AA; Ledesma-Amaro R; Lin CSK; Coulon F; Thakur VK; Kumar V Biotechnol Biofuels; 2020; 13():113. PubMed ID: 32607128 [TBL] [Abstract][Full Text] [Related]
20. Metabolic and Transcriptional Analysis of Recombinant Saccharomyces Cerevisiae for Xylose Fermentation: A Feasible and Efficient Approach. Shi XC; Zhang Y; Wang T; Wang XC; Lv HB; Laborda P; Duan TT IEEE J Biomed Health Inform; 2022 Jun; 26(6):2425-2434. PubMed ID: 34077376 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]