These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 31103359)

  • 21. Slow manifolds within network dynamics encode working memory efficiently and robustly.
    Ghazizadeh E; Ching S
    PLoS Comput Biol; 2021 Sep; 17(9):e1009366. PubMed ID: 34525089
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Turning on and off with excitation: the role of spike-timing asynchrony and synchrony in sustained neural activity.
    Gutkin BS; Laing CR; Colby CL; Chow CC; Ermentrout GB
    J Comput Neurosci; 2001; 11(2):121-34. PubMed ID: 11717529
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A neural net model for multiple memory domains.
    Anninos P; Kokkinidis M
    J Theor Biol; 1984 Jul; 109(1):95-110. PubMed ID: 6471872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flexible control of mutual inhibition: a neural model of two-interval discrimination.
    Machens CK; Romo R; Brody CD
    Science; 2005 Feb; 307(5712):1121-4. PubMed ID: 15718474
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Short term memory properties of sensory neural architectures.
    Dubreuil AM
    J Comput Neurosci; 2019 Jun; 46(3):321-332. PubMed ID: 31104206
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Attention and working memory: a dynamical model of neuronal activity in the prefrontal cortex.
    Deco G; Rolls ET
    Eur J Neurosci; 2003 Oct; 18(8):2374-90. PubMed ID: 14622200
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Higher-dimensional neurons explain the tuning and dynamics of working memory cells.
    Singh R; Eliasmith C
    J Neurosci; 2006 Apr; 26(14):3667-78. PubMed ID: 16597721
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Working memory for visual objects: complementary roles of inferior temporal, medial temporal, and prefrontal cortex.
    Ranganath C
    Neuroscience; 2006 Apr; 139(1):277-89. PubMed ID: 16343785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Working Memory and Decision-Making in a Frontoparietal Circuit Model.
    Murray JD; Jaramillo J; Wang XJ
    J Neurosci; 2017 Dec; 37(50):12167-12186. PubMed ID: 29114071
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-equilibrium landscape and flux reveal the stability-flexibility-energy tradeoff in working memory.
    Yan H; Wang J
    PLoS Comput Biol; 2020 Oct; 16(10):e1008209. PubMed ID: 33006962
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition.
    Cohen JR; D'Esposito M
    J Neurosci; 2016 Nov; 36(48):12083-12094. PubMed ID: 27903719
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effective connectivity within the frontoparietal control network differentiates cognitive control and working memory.
    Harding IH; Yücel M; Harrison BJ; Pantelis C; Breakspear M
    Neuroimage; 2015 Feb; 106():144-53. PubMed ID: 25463464
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational constraints that may have favoured the lamination of sensory cortex.
    Treves A
    J Comput Neurosci; 2003; 14(3):271-82. PubMed ID: 12766428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A large-scale neurocomputational model of task-oriented behavior selection and working memory in prefrontal cortex.
    Chadderdon GL; Sporns O
    J Cogn Neurosci; 2006 Feb; 18(2):242-57. PubMed ID: 16494684
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Irrelevant sensory stimuli interfere with working memory storage: evidence from a computational model of prefrontal neurons.
    Bancroft TD; Hockley WE; Servos P
    Cogn Affect Behav Neurosci; 2013 Mar; 13(1):23-34. PubMed ID: 23138530
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of dopamine in the maintenance of working memory in prefrontal cortex neurons: input-driven versus internally-driven networks.
    Versace M; Zorzi M
    Int J Neural Syst; 2010 Aug; 20(4):249-65. PubMed ID: 20726037
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations.
    Brody CD; Romo R; Kepecs A
    Curr Opin Neurobiol; 2003 Apr; 13(2):204-11. PubMed ID: 12744975
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling neuropathologies as disruption of normal sequence generation in working memory networks.
    Verduzco-Flores S; Ermentrout B; Bodner M
    Neural Netw; 2012 Mar; 27():21-31. PubMed ID: 22112921
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Slot-like capacity and resource-like coding in a neural model of multiple-item working memory.
    Standage D; Paré M
    J Neurophysiol; 2018 Oct; 120(4):1945-1961. PubMed ID: 29947585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Task representations in neural networks trained to perform many cognitive tasks.
    Yang GR; Joglekar MR; Song HF; Newsome WT; Wang XJ
    Nat Neurosci; 2019 Feb; 22(2):297-306. PubMed ID: 30643294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.