BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

663 related articles for article (PubMed ID: 31103549)

  • 1. Automating Ischemic Stroke Subtype Classification Using Machine Learning and Natural Language Processing.
    Garg R; Oh E; Naidech A; Kording K; Prabhakaran S
    J Stroke Cerebrovasc Dis; 2019 Jul; 28(7):2045-2051. PubMed ID: 31103549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated Electronic Phenotyping of Cardioembolic Stroke.
    Guan W; Ko D; Khurshid S; Trisini Lipsanopoulos AT; Ashburner JM; Harrington LX; Rost NS; Atlas SJ; Singer DE; McManus DD; Anderson CD; Lubitz SA
    Stroke; 2021 Jan; 52(1):181-189. PubMed ID: 33297865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural language processing and machine learning to enable automatic extraction and classification of patients' smoking status from electronic medical records.
    Caccamisi A; Jørgensen L; Dalianis H; Rosenlund M
    Ups J Med Sci; 2020 Nov; 125(4):316-324. PubMed ID: 32696698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural Language Processing and Machine Learning for Identifying Incident Stroke From Electronic Health Records: Algorithm Development and Validation.
    Zhao Y; Fu S; Bielinski SJ; Decker PA; Chamberlain AM; Roger VL; Liu H; Larson NB
    J Med Internet Res; 2021 Mar; 23(3):e22951. PubMed ID: 33683212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing stroke severity using electronic health record data: a machine learning approach.
    Kogan E; Twyman K; Heap J; Milentijevic D; Lin JH; Alberts M
    BMC Med Inform Decis Mak; 2020 Jan; 20(1):8. PubMed ID: 31914991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient identification of nationally mandated reportable cancer cases using natural language processing and machine learning.
    Osborne JD; Wyatt M; Westfall AO; Willig J; Bethard S; Gordon G
    J Am Med Inform Assoc; 2016 Nov; 23(6):1077-1084. PubMed ID: 27026618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning and natural language processing methods to identify ischemic stroke, acuity and location from radiology reports.
    Ong CJ; Orfanoudaki A; Zhang R; Caprasse FPM; Hutch M; Ma L; Fard D; Balogun O; Miller MI; Minnig M; Saglam H; Prescott B; Greer DM; Smirnakis S; Bertsimas D
    PLoS One; 2020; 15(6):e0234908. PubMed ID: 32559211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automation of penicillin adverse drug reaction categorisation and risk stratification with machine learning natural language processing.
    Inglis JM; Bacchi S; Troelnikov A; Smith W; Shakib S
    Int J Med Inform; 2021 Dec; 156():104611. PubMed ID: 34653809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EMR-Based Phenotyping of Ischemic Stroke Using Supervised Machine Learning and Text Mining Techniques.
    Sung SF; Lin CY; Hu YH
    IEEE J Biomed Health Inform; 2020 Oct; 24(10):2922-2931. PubMed ID: 32142458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computerized algorithm for etiologic classification of ischemic stroke: the Causative Classification of Stroke System.
    Ay H; Benner T; Arsava EM; Furie KL; Singhal AB; Jensen MB; Ayata C; Towfighi A; Smith EE; Chong JY; Koroshetz WJ; Sorensen AG
    Stroke; 2007 Nov; 38(11):2979-84. PubMed ID: 17901381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acronym Disambiguation in Spanish Electronic Health Narratives Using Machine Learning Techniques.
    Rubio-López I; Costumero R; Ambit H; Gonzalo-Martín C; Menasalvas E; Rodríguez González A
    Stud Health Technol Inform; 2017; 235():251-255. PubMed ID: 28423792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mining fall-related information in clinical notes: Comparison of rule-based and novel word embedding-based machine learning approaches.
    Topaz M; Murga L; Gaddis KM; McDonald MV; Bar-Bachar O; Goldberg Y; Bowles KH
    J Biomed Inform; 2019 Feb; 90():103103. PubMed ID: 30639392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An automated data verification approach for improving data quality in a clinical registry.
    Tian Q; Liu M; Min L; An J; Lu X; Duan H
    Comput Methods Programs Biomed; 2019 Nov; 181():104840. PubMed ID: 30777618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural Language Processing Technologies in Radiology Research and Clinical Applications.
    Cai T; Giannopoulos AA; Yu S; Kelil T; Ripley B; Kumamaru KK; Rybicki FJ; Mitsouras D
    Radiographics; 2016; 36(1):176-91. PubMed ID: 26761536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Stroke Detection during the COVID-19 Pandemic Using Natural Language Processing of Radiology Reports.
    Li MD; Lang M; Deng F; Chang K; Buch K; Rincon S; Mehan WA; Leslie-Mazwi TM; Kalpathy-Cramer J
    AJNR Am J Neuroradiol; 2021 Mar; 42(3):429-434. PubMed ID: 33334851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes.
    Lin C; Hsu CJ; Lou YS; Yeh SJ; Lee CC; Su SL; Chen HC
    J Med Internet Res; 2017 Nov; 19(11):e380. PubMed ID: 29109070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning to parse breast pathology reports in Chinese.
    Tang R; Ouyang L; Li C; He Y; Griffin M; Taghian A; Smith B; Yala A; Barzilay R; Hughes K
    Breast Cancer Res Treat; 2018 Jun; 169(2):243-250. PubMed ID: 29380208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using natural language processing and machine learning to identify breast cancer local recurrence.
    Zeng Z; Espino S; Roy A; Li X; Khan SA; Clare SE; Jiang X; Neapolitan R; Luo Y
    BMC Bioinformatics; 2018 Dec; 19(Suppl 17):498. PubMed ID: 30591037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Obtaining Knowledge in Pathology Reports Through a Natural Language Processing Approach With Classification, Named-Entity Recognition, and Relation-Extraction Heuristics.
    Oliwa T; Maron SB; Chase LM; Lomnicki S; Catenacci DVT; Furner B; Volchenboum SL
    JCO Clin Cancer Inform; 2019 Aug; 3():1-8. PubMed ID: 31365274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of a Machine Learning Classifier of Knee MRI Reports in Two Large Academic Radiology Practices: A Tool to Estimate Diagnostic Yield.
    Hassanpour S; Langlotz CP; Amrhein TJ; Befera NT; Lungren MP
    AJR Am J Roentgenol; 2017 Apr; 208(4):750-753. PubMed ID: 28140627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.