These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 31103572)

  • 1. Simultaneous Integration of Multi-omics Data Improves the Identification of Cancer Driver Modules.
    Silverbush D; Cristea S; Yanovich-Arad G; Geiger T; Beerenwinkel N; Sharan R
    Cell Syst; 2019 May; 8(5):456-466.e5. PubMed ID: 31103572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BeWith: A Between-Within method to discover relationships between cancer modules via integrated analysis of mutual exclusivity, co-occurrence and functional interactions.
    Dao P; Kim YA; Wojtowicz D; Madan S; Sharan R; Przytycka TM
    PLoS Comput Biol; 2017 Oct; 13(10):e1005695. PubMed ID: 29023534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous identification of multiple driver pathways in cancer.
    Leiserson MD; Blokh D; Sharan R; Raphael BJ
    PLoS Comput Biol; 2013; 9(5):e1003054. PubMed ID: 23717195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes.
    Lu X; Li X; Liu P; Qian X; Miao Q; Peng S
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis.
    Li A; Chapuy B; Varelas X; Sebastiani P; Monti S
    Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying mutated driver pathways in cancer by integrating multi-omics data.
    Wu J; Cai Q; Wang J; Liao Y
    Comput Biol Chem; 2019 Jun; 80():159-167. PubMed ID: 30959272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using MEMo to discover mutual exclusivity modules in cancer.
    Ciriello G; Cerami E; Aksoy BA; Sander C; Schultz N
    Curr Protoc Bioinformatics; 2013 Mar; Chapter 8():8.17.1-8.17.12. PubMed ID: 23504936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of multi-omics integration tools for cancer driver gene identification and tumour subtyping.
    Sathyanarayanan A; Gupta R; Thompson EW; Nyholt DR; Bauer DC; Nagaraj SH
    Brief Bioinform; 2020 Dec; 21(6):1920-1936. PubMed ID: 31774481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CDPath: Cooperative Driver Pathways Discovery Using Integer Linear Programming and Markov Clustering.
    Yang Z; Yu G; Guo M; Yu J; Zhang X; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1384-1395. PubMed ID: 31581094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BRCA-Pathway: a structural integration and visualization system of TCGA breast cancer data on KEGG pathways.
    Kim I; Choi S; Kim S
    BMC Bioinformatics; 2018 Feb; 19(Suppl 1):42. PubMed ID: 29504910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of driver modules in pan-cancer via coordinating coverage and exclusivity.
    Gao B; Li G; Liu J; Li Y; Huang X
    Oncotarget; 2017 May; 8(22):36115-36126. PubMed ID: 28415609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of multi-omics data to mine cancer-related gene modules.
    Li P; Guo M; Sun B
    J Bioinform Comput Biol; 2019 Dec; 17(6):1950038. PubMed ID: 32019413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of ovarian cancer subtype-specific network modules and candidate drivers through an integrative genomics approach.
    Zhang D; Chen P; Zheng CH; Xia J
    Oncotarget; 2016 Jan; 7(4):4298-309. PubMed ID: 26735889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of Driver Modules with Rarely Mutated Genes in Cancers.
    Li F; Gao L; Wang B
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):390-401. PubMed ID: 29994261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathway Relevance Ranking for Tumor Samples through Network-Based Data Integration.
    Verbeke LP; Van den Eynden J; Fierro AC; Demeester P; Fostier J; Marchal K
    PLoS One; 2015; 10(7):e0133503. PubMed ID: 26217958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IMI-driver: Integrating multi-level gene networks and multi-omics for cancer driver gene identification.
    Shi P; Han J; Zhang Y; Li G; Zhou X
    PLoS Comput Biol; 2024 Aug; 20(8):e1012389. PubMed ID: 39186807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
    Kim D; Li R; Dudek SM; Ritchie MD
    J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of driver pathways using mutated gene network in cancer.
    Li F; Gao L; Ma X; Yang X
    Mol Biosyst; 2016 Jun; 12(7):2135-41. PubMed ID: 27118146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.