These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 31103590)

  • 81. Intraoperative assessment of transient and persistent regional left ventricular wall motion abnormalities in patients undergoing coronary revascularization surgery using real time three-dimensional transesophageal echocardiography: A prospective observational study.
    Aggarwal N; Unnikrishnan KP; Biswas I; Karunakaran J; Suneel PR
    Echocardiography; 2017 Nov; 34(11):1649-1659. PubMed ID: 28833528
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Detection of culprit coronary lesion location in pre-hospital 12-lead ECG.
    Gregg RE; Babaeizadeh S
    J Electrocardiol; 2014; 47(6):890-4. PubMed ID: 25194873
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Incremental value of assessment of regional wall motion for detection of multivessel coronary artery disease in exercise (201)Tl gated myocardial perfusion imaging.
    Shirai N; Yamagishi H; Yoshiyama M; Teragaki M; Akioka K; Takeuchi K; Yoshikawa J; Ochi H
    J Nucl Med; 2002 Apr; 43(4):443-50. PubMed ID: 11937586
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Validation of three-dimensional echocardiography for quantifying the extent of dyssynergy in canine acute myocardial infarction: comparison with two-dimensional echocardiography.
    Sapin PM; Clarke GB; Gopal AS; Smith MD; King DL
    J Am Coll Cardiol; 1996 Jun; 27(7):1761-70. PubMed ID: 8636566
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Serial analysis of regional left ventricular wall motion by two-dimensional echocardiography in patients with coronary artery enlargement after Kawasaki disease.
    Vogel M; Smallhorn JF; Freedom RM
    J Am Coll Cardiol; 1992 Oct; 20(4):915-9. PubMed ID: 1527302
    [TBL] [Abstract][Full Text] [Related]  

  • 86. [Computer-assisted analysis of wall motion of the right ventricle in a normal patient sample and diagnosis of right heart infarction using transesophageal echocardiography].
    Schuster S; Erbel R; Rupprecht HJ; Wellek S; Meyer J
    Med Klin (Munich); 1991 Jul; 86(7):344-8. PubMed ID: 1921895
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Quantitation of regional ejection fractions using gated tomographic imaging with 99mTc-sestamibi.
    Lapeyre AC; Klodas E; Rogers PJ; Sinak LJ; Hammell TC; O'Connor MK; Gibbons RJ
    Chest; 2005 Mar; 127(3):778-86. PubMed ID: 15764757
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Transthoracic Doppler echocardiographic assessment of coronary flow velocity pattern in patient with acute myocardial infarction implies progression of myocardial damage.
    Ueda Y; Akasaka T; Hozumi T; Takagi T; Yamamuro A; Tamita K; Yamabe K; Morioka S; Yoshida K
    J Am Soc Echocardiogr; 2005 Nov; 18(11):1163-72. PubMed ID: 16275525
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Assessment of coronary blood flow in hypertrophic cardiomyopathy using thrombolysis in myocardial infarction frame count method.
    Yasar AS; Turhan H; Erbay AR; Karabal O; Bicer A; Sasmaz H; Yetkin E
    J Invasive Cardiol; 2005 Feb; 17(2):73-6. PubMed ID: 15687528
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Diagnostic assessment of a deep learning system for detecting atrial fibrillation in pulse waveforms.
    Poh MZ; Poh YC; Chan PH; Wong CK; Pun L; Leung WW; Wong YF; Wong MM; Chu DW; Siu CW
    Heart; 2018 Dec; 104(23):1921-1928. PubMed ID: 29853485
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Deep learning assisted detection of glaucomatous optic neuropathy and potential designs for a generalizable model.
    Ko YC; Wey SY; Chen WT; Chang YF; Chen MJ; Chiou SH; Liu CJ; Lee CY
    PLoS One; 2020; 15(5):e0233079. PubMed ID: 32407355
    [TBL] [Abstract][Full Text] [Related]  

  • 92. 2-Dimensional Speckle Tracking Echocardiography predicts severe coronary artery disease in women with normal left ventricular function: a case-control study.
    Hubbard RT; Arciniegas Calle MC; Barros-Gomes S; Kukuzke JA; Pellikka PA; Gulati R; Villarraga HR
    BMC Cardiovasc Disord; 2017 Aug; 17(1):231. PubMed ID: 28836949
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Weakly supervised video-based cardiac detection for hypertensive cardiomyopathy.
    Chen J; Zhang X; Yuan J; Shao R; Gan C; Ji Q; Luo W; Pang ZF; Zhu H
    BMC Med Imaging; 2023 Oct; 23(1):163. PubMed ID: 37858039
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Echocardiographic definition of the left ventricular centroid. II. Determination of the optimal centroid during systole in normal and infarcted hearts.
    Wiske PS; Pearlman JD; Hogan RD; Franklin TD; Weyman AE
    J Am Coll Cardiol; 1990 Oct; 16(4):993-9. PubMed ID: 2212382
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Real-time myocardial perfusion contrast echocardiography and regional wall motion abnormalities after aneurysmal subarachnoid hemorrhage. Clinical article.
    Abdelmoneim SS; Wijdicks EF; Lee VH; Daugherty WP; Bernier M; Oh JK; Pellikka PA; Mulvagh SL
    J Neurosurg; 2009 Nov; 111(5):1023-8. PubMed ID: 19392602
    [TBL] [Abstract][Full Text] [Related]  

  • 96. [Does left ventricular wall motion of akinetic segment improve after reperfusion therapy in patients with acute myocardial infarction?: assessment by myocardial contrast echocardiography].
    Sugiyama Y; Kajiyama H; Harada M; Suzuki M; Hirai H
    J Cardiol; 1998 Dec; 32(6):371-7. PubMed ID: 9914954
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Machine learning of the spatio-temporal characteristics of echocardiographic deformation curves for infarct classification.
    Tabassian M; Alessandrini M; Herbots L; Mirea O; Pagourelias ED; Jasaityte R; Engvall J; De Marchi L; Masetti G; D'hooge J
    Int J Cardiovasc Imaging; 2017 Aug; 33(8):1159-1167. PubMed ID: 28321681
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A promising approach for screening pulmonary hypertension based on frontal chest radiographs using deep learning: A retrospective study.
    Zou XL; Ren Y; Feng DY; He XQ; Guo YF; Yang HL; Li X; Fang J; Li Q; Ye JJ; Han LQ; Zhang TT
    PLoS One; 2020; 15(7):e0236378. PubMed ID: 32706807
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Utilization of Artificial Intelligence in Echocardiography.
    Kusunose K; Haga A; Abe T; Sata M
    Circ J; 2019 Jul; 83(8):1623-1629. PubMed ID: 31257314
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Performance of the deep convolutional neural network based magnetic resonance image scoring algorithm for differentiating between tuberculous and pyogenic spondylitis.
    Kim K; Kim S; Lee YH; Lee SH; Lee HS; Kim S
    Sci Rep; 2018 Sep; 8(1):13124. PubMed ID: 30177857
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.