These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 31103856)

  • 21. Deep pancreas segmentation with uncertain regions of shadowed sets.
    Zheng H; Chen Y; Yue X; Ma C; Liu X; Yang P; Lu J
    Magn Reson Imaging; 2020 May; 68():45-52. PubMed ID: 31987903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D Deep Learning for Anatomical Structure Segmentation in Multiple Imaging Modalities.
    Villarini B; Asaturyan H; Kurugol S; Afacan O; Bell JD; Thomas EL
    Proc IEEE Int Symp Comput Based Med Syst; 2021 Jun; 2021():166-171. PubMed ID: 35224185
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anatomical attention can help to segment the dilated pancreatic duct in abdominal CT.
    Shen C; Roth HR; Hayashi Y; Oda M; Sato G; Miyamoto T; Rueckert D; Mori K
    Int J Comput Assist Radiol Surg; 2024 Apr; 19(4):655-664. PubMed ID: 38498132
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automated abdominal multi-organ segmentation with subject-specific atlas generation.
    Wolz R; Chu C; Misawa K; Fujiwara M; Mori K; Rueckert D
    IEEE Trans Med Imaging; 2013 Sep; 32(9):1723-30. PubMed ID: 23744670
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Knowledge-Aided Convolutional Neural Network for Small Organ Segmentation.
    Zhao Y; Li H; Wan S; Sekuboyina A; Hu X; Tetteh G; Piraud M; Menze B
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1363-1373. PubMed ID: 30629519
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactive 3D U-net for the segmentation of the pancreas in computed tomography scans.
    Boers TGW; Hu Y; Gibson E; Barratt DC; Bonmati E; Krdzalic J; van der Heijden F; Hermans JJ; Huisman HJ
    Phys Med Biol; 2020 Mar; 65(6):065002. PubMed ID: 31978921
    [TBL] [Abstract][Full Text] [Related]  

  • 27. nnU-Net-Based Pancreas Segmentation and Volume Measurement on CT Imaging in Patients with Pancreatic Cancer.
    Yang E; Kim JH; Min JH; Jeong WK; Hwang JA; Lee JH; Shin J; Kim H; Lee SE; Baek SY
    Acad Radiol; 2024 Jul; 31(7):2784-2794. PubMed ID: 38350812
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pancreas Segmentation in MRI using Graph-Based Decision Fusion on Convolutional Neural Networks.
    Cai J; Lu L; Zhang Z; Xing F; Yang L; Yin Q
    Med Image Comput Comput Assist Interv; 2016 Oct; 9901():442-450. PubMed ID: 28083570
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automated Segmentation of Colorectal Tumor in 3D MRI Using 3D Multiscale Densely Connected Convolutional Neural Network.
    Soomro MH; Coppotelli M; Conforto S; Schmid M; Giunta G; Del Secco L; Neri E; Caruso D; Rengo M; Laghi A
    J Healthc Eng; 2019; 2019():1075434. PubMed ID: 30838121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pancreas segmentation using a dual-input v-mesh network.
    Wang Y; Gong G; Kong D; Li Q; Dai J; Zhang H; Qu J; Liu X; Xue J
    Med Image Anal; 2021 Apr; 69():101958. PubMed ID: 33550009
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-paced DenseNet with boundary constraint for automated multi-organ segmentation on abdominal CT images.
    Tong N; Gou S; Niu T; Yang S; Sheng K
    Phys Med Biol; 2020 Jul; 65(13):135011. PubMed ID: 32657281
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shape-intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images.
    Wang J; Cheng Y; Guo C; Wang Y; Tamura S
    Int J Comput Assist Radiol Surg; 2016 May; 11(5):817-26. PubMed ID: 26646416
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthetic MRI-aided multi-organ segmentation on male pelvic CT using cycle consistent deep attention network.
    Dong X; Lei Y; Tian S; Wang T; Patel P; Curran WJ; Jani AB; Liu T; Yang X
    Radiother Oncol; 2019 Dec; 141():192-199. PubMed ID: 31630868
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.
    Hu P; Wu F; Peng J; Bao Y; Chen F; Kong D
    Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):399-411. PubMed ID: 27885540
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kidney segmentation in CT sequences using graph cuts based active contours model and contextual continuity.
    Zhang P; Liang Y; Chang S; Fan H
    Med Phys; 2013 Aug; 40(8):081905. PubMed ID: 23927319
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accuracy Validation of an Automated Method for Prostate Segmentation in Magnetic Resonance Imaging.
    Shahedi M; Cool DW; Bauman GS; Bastian-Jordan M; Fenster A; Ward AD
    J Digit Imaging; 2017 Dec; 30(6):782-795. PubMed ID: 28342043
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Partitioned edge-function-scaled region-based active contour (p-ESRAC): automated liver segmentation in multiphase contrast-enhanced MRI.
    Oh J; Martin DR; Hu X
    Med Phys; 2014 Apr; 41(4):041914. PubMed ID: 24694145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Convolutional neural network-based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR images.
    Zabihollahy F; White JA; Ukwatta E
    Med Phys; 2019 Apr; 46(4):1740-1751. PubMed ID: 30734937
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D Liver Tumor Segmentation in CT Images Using Improved Fuzzy
    Wu W; Wu S; Zhou Z; Zhang R; Zhang Y
    Biomed Res Int; 2017; 2017():5207685. PubMed ID: 29090220
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours.
    Li D; Liu L; Chen J; Li H; Yin Y; Ibragimov B; Xing L
    Phys Med Biol; 2017 Jan; 62(1):272-288. PubMed ID: 27991439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.