These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 3110386)
1. Carbon dioxide elimination during high-frequency jet ventilation. Korvenranta H; Carlo WA; Goldthwait DA; Fanaroff AA J Pediatr; 1987 Jul; 111(1):107-13. PubMed ID: 3110386 [TBL] [Abstract][Full Text] [Related]
2. How does positive end-expiratory pressure decrease CO2 elimination from the lung? Breen PH; Mazumdar B Respir Physiol; 1996 Mar; 103(3):233-42. PubMed ID: 8738899 [TBL] [Abstract][Full Text] [Related]
3. The effects of passive humidifier dead space on respiratory variables in paralyzed and spontaneously breathing patients. Campbell RS; Davis K; Johannigman JA; Branson RD Respir Care; 2000 Mar; 45(3):306-12. PubMed ID: 10771799 [TBL] [Abstract][Full Text] [Related]
4. Bringing back the old: time to reevaluate the high-frequency ventilation strategy. Mukerji A; Belik J; Sanchez-Luna M J Perinatol; 2014 Jun; 34(6):464-7. PubMed ID: 24625518 [TBL] [Abstract][Full Text] [Related]
5. CO2 elimination as a function of frequency and tidal volume in rabbits during HFO. Watson JW; Jackson AC J Appl Physiol Respir Environ Exerc Physiol; 1984 Aug; 57(2):354-9. PubMed ID: 6432752 [TBL] [Abstract][Full Text] [Related]
6. Effects of changing inspiratory to expiratory time ratio on carbon dioxide elimination during high-frequency jet ventilation. Paloski WH; Barie PS; Mullins RJ; Newell JC Am Rev Respir Dis; 1985 Jan; 131(1):109-14. PubMed ID: 3917629 [TBL] [Abstract][Full Text] [Related]
7. An appropriate inspiratory flow pattern can enhance CO2 exchange, facilitating protective ventilation of healthy lungs. Sturesson LW; Malmkvist G; Allvin S; Collryd M; Bodelsson M; Jonson B Br J Anaesth; 2016 Aug; 117(2):243-9. PubMed ID: 27440637 [TBL] [Abstract][Full Text] [Related]
9. Lung aeration during ventilation after recruitment guided by tidal elimination of carbon dioxide and dynamic compliance was better than after end-tidal carbon dioxide targeted ventilation: a computed tomography study in surfactant-depleted piglets. Hanson A; Göthberg S; Nilsson K; Hedenstierna G Pediatr Crit Care Med; 2011 Nov; 12(6):e362-8. PubMed ID: 21263364 [TBL] [Abstract][Full Text] [Related]
10. Respiratory deadspace measurements in neonates during extracorporeal membrane oxygenation. Arnold JH; Thompson JE; Benjamin PK Crit Care Med; 1993 Dec; 21(12):1895-900. PubMed ID: 8252895 [TBL] [Abstract][Full Text] [Related]
11. Positive pressure versus pressure support ventilation at different levels of PEEP using the ProSeal laryngeal mask airway. von Goedecke A; Brimacombe J; Keller C; Hoermann C; Loeckinger A; Rieder J; Kleinsasser A Anaesth Intensive Care; 2004 Dec; 32(6):804-8. PubMed ID: 15648991 [TBL] [Abstract][Full Text] [Related]
12. Effects of continuous, expiratory, reverse, and bi-directional tracheal gas insufflation in conjunction with a flow relief valve on delivered tidal volume, total positive end-expiratory pressure, and carbon dioxide elimination: a bench study. Delgado E; Hete B; Hoffman LA; Tasota FJ; Pinsky MR Respir Care; 2001 Jun; 46(6):577-85. PubMed ID: 11353546 [TBL] [Abstract][Full Text] [Related]
13. Tidal volume and frequency dependence of carbon dioxide elimination by high-frequency ventilation. Rossing TH; Slutsky AS; Lehr JL; Drinker PA; Kamm R; Drazen JM N Engl J Med; 1981 Dec; 305(23):1375-9. PubMed ID: 6795503 [TBL] [Abstract][Full Text] [Related]
14. Factors influencing pulmonary volumes and CO2 elimination during high-frequency jet ventilation. Rouby JJ; Simonneau G; Benhamou D; Sartene R; Sardnal F; Deriaz H; Duroux P; Viars P Anesthesiology; 1985 Nov; 63(5):473-82. PubMed ID: 3931506 [TBL] [Abstract][Full Text] [Related]
15. Gas exchange during high-frequency ventilation of the chicken. Banzett RB; Lehr JL J Appl Physiol Respir Environ Exerc Physiol; 1982 Dec; 53(6):1418-22. PubMed ID: 6818212 [TBL] [Abstract][Full Text] [Related]
16. Distribution of expiratory gas and rebreathing in a T-piece modification combined with a PEEP valve. Hartmann-Andersen F; Andersen PK; Olsen JE; Jakubaszko J Acta Anaesthesiol Scand; 1984 Dec; 28(6):671-6. PubMed ID: 6441434 [TBL] [Abstract][Full Text] [Related]
18. Monitoring end-tidal carbon dioxide tensions with high-frequency jet ventilation in dogs with normal lungs. Mihm FG; Feeley TW; Rodarte A Crit Care Med; 1984 Mar; 12(3):180-2. PubMed ID: 6421542 [TBL] [Abstract][Full Text] [Related]
19. Positive end-expiratory pressure has little effect on carbon dioxide elimination after cardiac surgery. Smith RP; Fletcher R Anesth Analg; 2000 Jan; 90(1):85-8. PubMed ID: 10624984 [TBL] [Abstract][Full Text] [Related]
20. Reduced CO2-elimination during combined high-frequency ventilation compared to conventional pressure-controlled ventilation in surfactant-deficient piglets. Lichtwarck-Aschoff M; Zimmermann GJ; Erhardt W Acta Anaesthesiol Scand; 1998 Mar; 42(3):335-42. PubMed ID: 9542562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]