BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 31103897)

  • 1. Dehydrodieugenol B derivatives as antiparasitic agents: Synthesis and biological activity against Trypanosoma cruzi.
    Ferreira DD; Sousa FS; Costa-Silva TA; Reimão JQ; Torrecilhas AC; Johns DM; Sear CE; Honorio KM; Lago JHG; Anderson EA; Tempone AG
    Eur J Med Chem; 2019 Aug; 176():162-174. PubMed ID: 31103897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neolignans from leaves of Nectandra leucantha (Lauraceae) display in vitro antitrypanosomal activity via plasma membrane and mitochondrial damages.
    Grecco SS; Costa-Silva TA; Jerz G; de Sousa FS; Londero VS; Galuppo MK; Lima ML; Neves BJ; Andrade CH; Tempone AG; Lago JHG
    Chem Biol Interact; 2017 Nov; 277():55-61. PubMed ID: 28864277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the drug-likeness of inspiring natural products - evaluation of the antiparasitic activity against Trypanosoma cruzi through semi-synthetic and simplified analogues of licarin A.
    Morais TR; Conserva GAA; Varela MT; Costa-Silva TA; Thevenard F; Ponci V; Fortuna A; Falcão AC; Tempone AG; Fernandes JPS; Lago JHG
    Sci Rep; 2020 Mar; 10(1):5467. PubMed ID: 32214193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dibenzylbutane neolignans from Saururus cernuus L. (Saururaceae) displayed anti-Trypanosoma cruzi activity via alterations in the mitochondrial membrane potential.
    Brito JR; da Costa-Silva TA; Tempone AG; Ferreira EA; Lago JHG
    Fitoterapia; 2019 Sep; 137():104251. PubMed ID: 31271783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-Trypanosoma cruzi activity of costic acid isolated from Nectandra barbellata (Lauraceae) is associated with alterations in plasma membrane electric and mitochondrial membrane potentials.
    Londero VS; Costa-Silva TA; Tempone AG; Namiyama GM; Thevenard F; Antar GM; Baitello JB; Lago JHG
    Bioorg Chem; 2020 Jan; 95():103510. PubMed ID: 31884137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of New Hits as Antitrypanosomal Agents by In Silico and In Vitro Assays Using Neolignan-Inspired Natural Products from
    Araujo SC; Sousa FS; Costa-Silva TA; Tempone AG; Lago JHG; Honorio KM
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simplified Derivatives of Dibenzylbutyrolactone Lignans from Hydrocotyle bonariensis as Antitrypanosomal Candidates.
    Souza DCS; Costa-Silva TA; Morais TR; Brito JR; Ferreira EA; Antar GM; Sartorelli P; Tempone AG; Lago JHG
    Chem Biodivers; 2021 Oct; 18(10):e2100515. PubMed ID: 34424612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and 2D-QSAR studies of neolignan-based diaryl-tetrahydrofuran and -furan analogues with remarkable activity against Trypanosoma cruzi and assessment of the trypanothione reductase activity.
    Hartmann AP; de Carvalho MR; Bernardes LSC; Moraes MH; de Melo EB; Lopes CD; Steindel M; da Silva JS; Carvalho I
    Eur J Med Chem; 2017 Nov; 140():187-199. PubMed ID: 28926763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antitrypanosomal activity and evaluation of the mechanism of action of dehydrodieugenol isolated from Nectandra leucantha (Lauraceae) and its methylated derivative against Trypanosoma cruzi.
    Grecco SS; Costa-Silva TA; Jerz G; de Sousa FS; Alves Conserva GA; Mesquita JT; Galuppo MK; Tempone AG; Neves BJ; Andrade CH; Cunha RL; Uemi M; Sartorelli P; Lago JH
    Phytomedicine; 2017 Jan; 24():62-67. PubMed ID: 28160863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and Structure-Activity Relationship of Dehydrodieugenol B Neolignans against
    Sear CE; Pieper P; Amaral M; Romanelli MM; Costa-Silva TA; Haugland MM; Tate JA; Lago JHG; Tempone AG; Anderson EA
    ACS Infect Dis; 2020 Nov; 6(11):2872-2878. PubMed ID: 33047947
    [No Abstract]   [Full Text] [Related]  

  • 11. Efficacy of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinone derivatives against different Trypanosoma cruzi discrete type units: Identification of a promising hit compound.
    Lara LS; Moreira CS; Calvet CM; Lechuga GC; Souza RS; Bourguignon SC; Ferreira VF; Rocha D; Pereira MCS
    Eur J Med Chem; 2018 Jan; 144():572-581. PubMed ID: 29289882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New derivatives from dehydrodieugenol B and its methyl ether displayed high anti-Trypanosoma cruzi activity and cause depolarization of the plasma membrane and collapse the mitochondrial membrane potential.
    Galhardo TS; Ueno AK; Costa-Silva TA; Tempone AG; Carvalho WA; Fischmeister C; Bruneau C; Mandelli D; Lago JHG
    Chem Biol Interact; 2022 Oct; 366():110129. PubMed ID: 36067825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Butenolides from Nectandra oppositifolia (Lauraceae) displayed anti-Trypanosoma cruzi activity via deregulation of mitochondria.
    Conserva GAA; da Costa-Silva TA; Amaral M; Antar GM; Neves BJ; Andrade CH; Tempone AG; Lago JHG
    Phytomedicine; 2019 Feb; 54():302-307. PubMed ID: 30668381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, structure-activity relationship and trypanocidal activity of pyrazole-imidazoline and new pyrazole-tetrahydropyrimidine hybrids as promising chemotherapeutic agents for Chagas disease.
    Monteiro ME; Lechuga G; Lara LS; Souto BA; Viganó MG; Bourguignon SC; Calvet CM; Oliveira FOR; Alves CR; Souza-Silva F; Santos MS; Pereira MCS
    Eur J Med Chem; 2019 Nov; 182():111610. PubMed ID: 31434040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antitrypanosomal activity of isololiolide isolated from the marine hydroid Macrorhynchia philippina (Cnidaria, Hydrozoa).
    Lima ML; Romanelli MM; Borborema SET; Johns DM; Migotto AE; Lago JHG; Tempone AG
    Bioorg Chem; 2019 Aug; 89():103002. PubMed ID: 31136901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the antitrypanosoma activity and SAR study of novel LINS03 derivatives.
    Varela MT; Costa-Silva TA; Lago JHG; Tempone AG; Fernandes JPS
    Bioorg Chem; 2019 Aug; 89():102996. PubMed ID: 31132603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural-product-inspired design and synthesis of two series of compounds active against Trypanosoma cruzi: Insights into structure-activity relationship, toxicity, and mechanism of action.
    da Rosa R; Dambrós BP; Höehr de Moraes M; Grand L; Jacolot M; Popowycz F; Steindel M; Schenkel EP; Campos Bernardes LS
    Bioorg Chem; 2022 Feb; 119():105492. PubMed ID: 34838333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel coumarins active against Trypanosoma cruzi and toxicity assessment using the animal model Caenorhabditis elegans.
    Soares FGN; Göethel G; Kagami LP; das Neves GM; Sauer E; Birriel E; Varela J; Gonçalves IL; Von Poser G; González M; Kawano DF; Paula FR; de Melo EB; Garcia SC; Cerecetto H; Eifler-Lima VL
    BMC Pharmacol Toxicol; 2019 Dec; 20(Suppl 1):76. PubMed ID: 31852548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kaempferol-3-O-α-(3,4-di-E-p-coumaroyl)-rhamnopyranoside from Nectandra oppositifolia releases Ca
    Conserva GA; Costa-Silva TA; Quirós-Guerrero LM; Marcourt L; Wolfender JL; Queiroz EF; Tempone AG; Lago JHG
    Chem Biol Interact; 2021 Nov; 349():109661. PubMed ID: 34537181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neolignans from plants in northeastern Brazil (Lauraceae) with activity against Trypanosoma cruzi.
    Cabral MM; Barbosa-Filho JM; Maia GL; Chaves MC; Braga MV; De Souza W; Soares RO
    Exp Parasitol; 2010 Mar; 124(3):319-24. PubMed ID: 19944690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.