BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31104098)

  • 1. Marine bisindole alkaloid 2,2-bis(6-bromo-3-indolyl)ethylamine to control and prevent fungal growth on building material: a potential antifungal agent.
    Campana R; Sisti M; Sabatini L; Lucarini S
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5607-5616. PubMed ID: 31104098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi.
    Abbaszadeh S; Sharifzadeh A; Shokri H; Khosravi AR; Abbaszadeh A
    J Mycol Med; 2014 Jun; 24(2):e51-6. PubMed ID: 24582134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Marine bisindole alkaloid: A potential apoptotic inducer in human cancer cells.
    Salucci S; Burattini S; Buontempo F; Orsini E; Furiassi L; Mari M; Lucarini S; Martelli AM; Falcieri E
    Eur J Histochem; 2018 Apr; 62(2):2881. PubMed ID: 29943949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifungal activity of silver ion on ultrastructure and production of aflatoxin B1 and patulin by two mycotoxigenic strains, Aspergillus flavus OC1 and Penicillium vulpinum CM1.
    Ismaiel AA; Tharwat NA
    J Mycol Med; 2014 Sep; 24(3):193-204. PubMed ID: 24746717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Susceptibility of green and conventional building materials to microbial growth.
    Mensah-Attipoe J; Reponen T; Salmela A; Veijalainen AM; Pasanen P
    Indoor Air; 2015 Jun; 25(3):273-84. PubMed ID: 24975616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marine Alkaloid 2,2-Bis(6-bromo-3-indolyl) Ethylamine and Its Synthetic Derivatives Inhibit Microbial Biofilms Formation and Disaggregate Developed Biofilms.
    Campana R; Favi G; Baffone W; Lucarini S
    Microorganisms; 2019 Jan; 7(2):. PubMed ID: 30678052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the combined efficacy of polymers with fungicides for protection of museum textiles against fungal deterioration in Egypt.
    Abdel-Kareem O
    Pol J Microbiol; 2010; 59(4):271-80. PubMed ID: 21466045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological effects and mode of action of ZnO nanoparticles against postharvest fungal contaminants.
    Sardella D; Gatt R; Valdramidis VP
    Food Res Int; 2017 Nov; 101():274-279. PubMed ID: 28941694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antifungal activity of n-tributyltin acetate against some common yam rot fungi.
    Olurinola PF; Ehinmidu JO; Bonire JJ
    Appl Environ Microbiol; 1992 Feb; 58(2):758-60. PubMed ID: 1610202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural control of corn postharvest fungi Aspergillus flavus and Penicillium sp. using essential oils from plants grown in Argentina.
    Camiletti BX; Asensio CM; Pecci Mde L; Lucini EI
    J Food Sci; 2014 Dec; 79(12):M2499-506. PubMed ID: 25376651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the antifungal effects of algal extracts on apple-infecting fungi.
    Vehapi M; Koçer AT; Yılmaz A; Özçimen D
    Arch Microbiol; 2020 Apr; 202(3):455-471. PubMed ID: 31696248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi.
    Xu Y; Gao C; Li X; He Y; Zhou L; Pang G; Sun S
    J Ocul Pharmacol Ther; 2013 Mar; 29(2):270-4. PubMed ID: 23410063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifungal New Oxepine-Containing Alkaloids and Xanthones from the Deep-Sea-Derived Fungus Aspergillus versicolor SCSIO 05879.
    Wang J; He W; Huang X; Tian X; Liao S; Yang B; Wang F; Zhou X; Liu Y
    J Agric Food Chem; 2016 Apr; 64(14):2910-6. PubMed ID: 26998701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifungal and antimycotoxigenic potency of Solanum torvum Swartz. leaf extract: isolation and identification of compound active against mycotoxigenic strains of Aspergillus flavus and Fusarium verticillioides.
    Abhishek RU; Thippeswamy S; Manjunath K; Mohana DC
    J Appl Microbiol; 2015 Dec; 119(6):1624-36. PubMed ID: 26394117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antifungal and Antiaflatoxigenic Methylenedioxy-Containing Compounds and Piperine-Like Synthetic Compounds.
    Moon YS; Choi WS; Park ES; Bae IK; Choi SD; Paek O; Kim SH; Chun HS; Lee SE
    Toxins (Basel); 2016 Aug; 8(8):. PubMed ID: 27537912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the activity of antifungal hexapeptides and the fungicides thiabendazole and imazalil against postharvest fungal pathogens.
    López-García B; Veyrat A; Pérez-Payá E; González-Candelas L; Marcos JF
    Int J Food Microbiol; 2003 Dec; 89(2-3):163-70. PubMed ID: 14623382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation, identification and antifungal susceptibility of lemon pathogenic and non pathogenic fungi.
    Maldonado MC; Santa Runco R; Navarro AR
    Rev Iberoam Micol; 2005 Mar; 22(1):57-9. PubMed ID: 15813686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and Antimicrobial Activity of Calycanthaceous Alkaloid Analogues.
    Zheng S; Li L; Wang Y; Zhu R; Bai H; Zhang J
    Nat Prod Commun; 2016 Oct; 11(10):1429-1432. PubMed ID: 30549592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro susceptibility of filamentous fungi to copper nanoparticles assessed by rapid XTT colorimetry and agar dilution method.
    Ghasemian E; Naghoni A; Tabaraie B; Tabaraie T
    J Mycol Med; 2012 Dec; 22(4):322-8. PubMed ID: 23518166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an Antifungal Device Based on Oriental Mustard Flour to Prevent Fungal Growth and Aflatoxin B1 Production in Almonds.
    Nazareth TM; Torrijos R; Bocate KP; Mañes J; Luciano FB; Meca G; Vila-Donat P
    Toxins (Basel); 2021 Dec; 14(1):. PubMed ID: 35050982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.