BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 31104102)

  • 1. Synergistic action of Bacillus subtilis, Escherichia coli and Shewanella putrefaciens along with Pseudomonas putida on inhibiting mild steel against oxygen corrosion.
    Suma MS; Basheer R; Sreelekshmy BR; Riyas AH; Bhagya TC; Sha MA; Shibli SMA
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5891-5905. PubMed ID: 31104102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of marine Shewanella putrefaciens and mediated calcium deposition on Q235 carbon steel corrosion.
    Lou Y; Chang W; Huang L; Chen X; Hao X; Qian H; Zhang D
    Bioelectrochemistry; 2024 Jun; 157():108657. PubMed ID: 38335713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimicrobial peptide AMPNT-6 from Bacillus subtilis inhibits biofilm formation by Shewanella putrefaciens and disrupts its preformed biofilms on both abiotic and shrimp shell surfaces.
    Deng Q; Pu Y; Sun L; Wang Y; Liu Y; Wang R; Liao J; Xu D; Liu Y; Ye R; Fang Z; Gooneratne R
    Food Res Int; 2017 Dec; 102():8-13. PubMed ID: 29196015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms.
    Zuo R; Wood TK
    Appl Microbiol Biotechnol; 2004 Nov; 65(6):747-53. PubMed ID: 15278311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Axenic aerobic biofilms inhibit corrosion of SAE 1018 steel through oxygen depletion.
    Jayaraman A; Cheng ET; Earthman JC; Wood TK
    Appl Microbiol Biotechnol; 1997 Jul; 48(1):11-7. PubMed ID: 9274042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocorrosion inhibition of Cu70:Ni30 by Bacillus subtilis strain S1X and Pseudomonas aeruginosa strain ZK biofilms.
    Wadood HZ; Rajasekar A; Farooq A; Ting YP; Sabri AN
    J Basic Microbiol; 2020 Mar; 60(3):243-252. PubMed ID: 31840841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of axenic Pseudomonas fragi and Escherichia coli biofilms that inhibit corrosion of SAE 1018 steel.
    Jayaraman A; Sun AK; Wood TK
    J Appl Microbiol; 1998 Apr; 84(4):485-92. PubMed ID: 9633647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Bacillus subtilis on corrosion behavior of 10MnNiCrCu steel in marine environment.
    Wang YS; Liu L; Fu Q; Sun J; An ZY; Ding R; Li Y; Zhao XD
    Sci Rep; 2020 Apr; 10(1):5744. PubMed ID: 32238880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corrosion protection by anaerobiosis.
    Volkland HP; Harms H; Wanner ; Zehnder AJ
    Water Sci Technol; 2001; 44(8):103-6. PubMed ID: 11730124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial phosphating of mild (unalloyed) steel.
    Volkland HP; Harms H; Müller B; Repphun G; Wanner O; Zehnder AJ
    Appl Environ Microbiol; 2000 Oct; 66(10):4389-95. PubMed ID: 11010888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioengineered silver nanoparticles as potent anti-corrosive inhibitor for mild steel in cooling towers.
    Narenkumar J; Parthipan P; Madhavan J; Murugan K; Marpu SB; Suresh AK; Rajasekar A
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5412-5420. PubMed ID: 29209978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of biofilm in the maturation process on the corrosion behavior of galvanized steel: long-term evaluation by EIS.
    Unsal T; Cansever N; Ilhan-Sungur E
    World J Microbiol Biotechnol; 2019 Jan; 35(2):22. PubMed ID: 30656423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shewanella putrefaciens adhesion and biofilm formation on food processing surfaces.
    Bagge D; Hjelm M; Johansen C; Huber I; Gram L
    Appl Environ Microbiol; 2001 May; 67(5):2319-25. PubMed ID: 11319118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Syzygium aromaticum aqueous extract as an eco-friendly inhibitor for microbiologically influenced corrosion of carbon steel in oil reservoir environment.
    Parthipan P; AlSalhi MS; Devanesan S; Rajasekar A
    Bioprocess Biosyst Eng; 2021 Jul; 44(7):1441-1452. PubMed ID: 33710453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biogenic corrosion inhibitor on mild steel protection in concentrated HCl medium.
    Krishnan M; Subramanian H; Dahms HU; Sivanandham V; Seeni P; Gopalan S; Mahalingam A; Rathinam AJ
    Sci Rep; 2018 Feb; 8(1):2609. PubMed ID: 29422634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of biofilm formation for corrosion inhibition of SAE 1018 steel by axenic aerobic biofilms.
    Jayaraman A; Cheng ET; Earthman JC; Wood TK
    J Ind Microbiol Biotechnol; 1997 Jun; 18(6):396-401. PubMed ID: 9248069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-enhanced Raman scattering (SERS) revealing chemical variation during biofilm formation: from initial attachment to mature biofilm.
    Chao Y; Zhang T
    Anal Bioanal Chem; 2012 Sep; 404(5):1465-75. PubMed ID: 22820905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial iron respiration can protect steel from corrosion.
    Dubiel M; Hsu CH; Chien CC; Mansfeld F; Newman DK
    Appl Environ Microbiol; 2002 Mar; 68(3):1440-5. PubMed ID: 11872499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron transfer and biofilm formation of Shewanella putrefaciens as function of anode potential.
    Carmona-Martínez AA; Harnisch F; Kuhlicke U; Neu TR; Schröder U
    Bioelectrochemistry; 2013 Oct; 93():23-9. PubMed ID: 22658509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Role of exopolymeric substances of corrosion-aggressive bacteria in the biofilm formation on the steel surface].
    Purish LM; Asaulenko LH; Abdulina DR; Vasyl'ev VM; Iutyns'ka HO
    Mikrobiol Z; 2011; 73(1):3-9. PubMed ID: 21442946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.