These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 31104273)
1. Regression based overall survival prediction of glioblastoma multiforme patients using a single discovery cohort of multi-institutional multi-channel MR images. Sanghani P; Ang BT; King NKK; Ren H Med Biol Eng Comput; 2019 Aug; 57(8):1683-1691. PubMed ID: 31104273 [TBL] [Abstract][Full Text] [Related]
2. Prediction of survival with multi-scale radiomic analysis in glioblastoma patients. Chaddad A; Sabri S; Niazi T; Abdulkarim B Med Biol Eng Comput; 2018 Dec; 56(12):2287-2300. PubMed ID: 29915951 [TBL] [Abstract][Full Text] [Related]
3. Overall survival prediction in glioblastoma multiforme patients from volumetric, shape and texture features using machine learning. Sanghani P; Ang BT; King NKK; Ren H Surg Oncol; 2018 Dec; 27(4):709-714. PubMed ID: 30449497 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of tumor shape features for overall survival prognosis in glioblastoma multiforme patients. Sanghani P; Ti AB; Kam King NK; Ren H Surg Oncol; 2019 Jun; 29():178-183. PubMed ID: 31196485 [TBL] [Abstract][Full Text] [Related]
5. A quantitative study of shape descriptors from glioblastoma multiforme phenotypes for predicting survival outcome. Chaddad A; Desrosiers C; Hassan L; Tanougast C Br J Radiol; 2016 Dec; 89(1068):20160575. PubMed ID: 27781499 [TBL] [Abstract][Full Text] [Related]
6. Radiomic analysis of multi-contrast brain MRI for the prediction of survival in patients with glioblastoma multiforme. Chaddad A; Desrosiers C; Toews M Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4035-4038. PubMed ID: 28325002 [TBL] [Abstract][Full Text] [Related]
7. Radiomic Analysis Reveals Prognostic Information in T1-Weighted Baseline Magnetic Resonance Imaging in Patients With Glioblastoma. Ingrisch M; Schneider MJ; Nörenberg D; Negrao de Figueiredo G; Maier-Hein K; Suchorska B; Schüller U; Albert N; Brückmann H; Reiser M; Tonn JC; Ertl-Wagner B Invest Radiol; 2017 Jun; 52(6):360-366. PubMed ID: 28079702 [TBL] [Abstract][Full Text] [Related]
8. Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction. Zhou M; Chaudhury B; Hall LO; Goldgof DB; Gillies RJ; Gatenby RA J Magn Reson Imaging; 2017 Jul; 46(1):115-123. PubMed ID: 27678245 [TBL] [Abstract][Full Text] [Related]
9. Robust texture features for response monitoring of glioblastoma multiforme on T1-weighted and T2-FLAIR MR images: a preliminary investigation in terms of identification and segmentation. Assefa D; Keller H; Ménard C; Laperriere N; Ferrari RJ; Yeung I Med Phys; 2010 Apr; 37(4):1722-36. PubMed ID: 20443493 [TBL] [Abstract][Full Text] [Related]
10. Machine-learning based radiogenomics analysis of MRI features and metagenes in glioblastoma multiforme patients with different survival time. Liao X; Cai B; Tian B; Luo Y; Song W; Li Y J Cell Mol Med; 2019 Jun; 23(6):4375-4385. PubMed ID: 31001929 [TBL] [Abstract][Full Text] [Related]
11. Algorithmic three-dimensional analysis of tumor shape in MRI improves prognosis of survival in glioblastoma: a multi-institutional study. Czarnek N; Clark K; Peters KB; Mazurowski MA J Neurooncol; 2017 Mar; 132(1):55-62. PubMed ID: 28074320 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Yang D; Rao G; Martinez J; Veeraraghavan A; Rao A Med Phys; 2015 Nov; 42(11):6725-35. PubMed ID: 26520762 [TBL] [Abstract][Full Text] [Related]
13. Radiomic Profiling of Glioblastoma: Identifying an Imaging Predictor of Patient Survival with Improved Performance over Established Clinical and Radiologic Risk Models. Kickingereder P; Burth S; Wick A; Götz M; Eidel O; Schlemmer HP; Maier-Hein KH; Wick W; Bendszus M; Radbruch A; Bonekamp D Radiology; 2016 Sep; 280(3):880-9. PubMed ID: 27326665 [TBL] [Abstract][Full Text] [Related]
14. A Deep Learning-Based Radiomics Model for Prediction of Survival in Glioblastoma Multiforme. Lao J; Chen Y; Li ZC; Li Q; Zhang J; Liu J; Zhai G Sci Rep; 2017 Sep; 7(1):10353. PubMed ID: 28871110 [TBL] [Abstract][Full Text] [Related]
15. Development and Validation of a MRI-Based Radiomics Prognostic Classifier in Patients with Primary Glioblastoma Multiforme. Chen X; Fang M; Dong D; Liu L; Xu X; Wei X; Jiang X; Qin L; Liu Z Acad Radiol; 2019 Oct; 26(10):1292-1300. PubMed ID: 30660472 [TBL] [Abstract][Full Text] [Related]
16. Survival prediction of patients suffering from glioblastoma based on two-branch DenseNet using multi-channel features. Fu X; Chen C; Li D Int J Comput Assist Radiol Surg; 2021 Feb; 16(2):207-217. PubMed ID: 33462763 [TBL] [Abstract][Full Text] [Related]
17. Quantitative volumetric assessment of baseline enhancing tumor volume as an imaging biomarker predicts overall survival in patients with glioblastoma. Auer TA; Della Seta M; Collettini F; Chapiro J; Zschaeck S; Ghadjar P; Badakhshi H; Florange J; Hamm B; Budach V; Kaul D Acta Radiol; 2021 Sep; 62(9):1200-1207. PubMed ID: 32938221 [TBL] [Abstract][Full Text] [Related]
18. Semantic imaging features predict disease progression and survival in glioblastoma multiforme patients. Peeken JC; Hesse J; Haller B; Kessel KA; Nüsslin F; Combs SE Strahlenther Onkol; 2018 Jun; 194(6):580-590. PubMed ID: 29442128 [TBL] [Abstract][Full Text] [Related]
19. Impact of image preprocessing on the scanner dependence of multi-parametric MRI radiomic features and covariate shift in multi-institutional glioblastoma datasets. Um H; Tixier F; Bermudez D; Deasy JO; Young RJ; Veeraraghavan H Phys Med Biol; 2019 Aug; 64(16):165011. PubMed ID: 31272093 [TBL] [Abstract][Full Text] [Related]
20. Multimodal imaging patterns predict survival in recurrent glioblastoma patients treated with bevacizumab. Chang K; Zhang B; Guo X; Zong M; Rahman R; Sanchez D; Winder N; Reardon DA; Zhao B; Wen PY; Huang RY Neuro Oncol; 2016 Dec; 18(12):1680-1687. PubMed ID: 27257279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]