These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 31104554)

  • 1. Influence of left ventricular assist device pressure-flow characteristic on exercise physiology: Assessment with a verified numerical model.
    Graefe R; Henseler A; Körfer R; Meyns B; Fresiello L
    Int J Artif Organs; 2019 Sep; 42(9):490-499. PubMed ID: 31104554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exercise physiology with a left ventricular assist device: Analysis of heart-pump interaction with a computational simulator.
    Fresiello L; Rademakers F; Claus P; Ferrari G; Di Molfetta A; Meyns B
    PLoS One; 2017; 12(7):e0181879. PubMed ID: 28738087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiology of the native heart and Thermo Cardiosystems left ventricular assist device complex at rest and during exercise: implications for chronic support.
    Branch KR; Dembitsky WP; Peterson KL; Adamson R; Gordon JB; Smith SC; Jaski BE
    J Heart Lung Transplant; 1994; 13(4):641-50; discussion 651. PubMed ID: 7947881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemodynamic exercise responses with a continuous-flow left ventricular assist device: Comparison of patients' response and cardiorespiratory simulations.
    Gross C; Fresiello L; Schlöglhofer T; Dimitrov K; Marko C; Maw M; Meyns B; Wiedemann D; Zimpfer D; Schima H; Moscato F
    PLoS One; 2020; 15(3):e0229688. PubMed ID: 32187193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LVAD speed increase during exercise, which patients would benefit the most? A simulation study.
    Gross C; Moscato F; Schlöglhofer T; Maw M; Meyns B; Marko C; Wiedemann D; Zimpfer D; Schima H; Fresiello L
    Artif Organs; 2020 Mar; 44(3):239-247. PubMed ID: 31519043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Haemodynamic Effect of Left Atrial and Left Ventricular Cannulation with a Rapid Speed Modulated Rotary Blood Pump During Rest and Exercise: Investigation in a Numerical Cardiorespiratory Model.
    Wu EL; Fresiello L; Kleinhyer M; Meyns B; Fraser JF; Tansley G; Gregory SD
    Cardiovasc Eng Technol; 2020 Aug; 11(4):350-361. PubMed ID: 32557185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of continuous flow ventricular assist devices in patients with heart failure and a normal ejection fraction: a computer-simulation study.
    Moscato F; Wirrmann C; Granegger M; Eskandary F; Zimpfer D; Schima H
    J Thorac Cardiovasc Surg; 2013 May; 145(5):1352-8. PubMed ID: 22841169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central and peripheral blood flow during exercise with a continuous-flow left ventricular assist device: constant versus increasing pump speed: a pilot study.
    Brassard P; Jensen AS; Nordsborg N; Gustafsson F; Møller JE; Hassager C; Boesgaard S; Hansen PB; Olsen PS; Sander K; Secher NH; Madsen PL
    Circ Heart Fail; 2011 Sep; 4(5):554-60. PubMed ID: 21765126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exercise hemodynamics during long-term implantation of a left ventricular assist device in patients awaiting heart transplantation.
    Jaski BE; Branch KR; Adamson R; Peterson KL; Gordon JB; Hoagland PM; Smith SC; Daily PO; Dembitsky WP
    J Am Coll Cardiol; 1993 Nov; 22(6):1574-80. PubMed ID: 8227823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reproduction of continuous flow left ventricular assist device experimental data by means of a hybrid cardiovascular model with baroreflex control.
    Fresiello L; Zieliński K; Jacobs S; Di Molfetta A; Pałko KJ; Bernini F; Martin M; Claus P; Ferrari G; Trivella MG; Górczyńska K; Darowski M; Meyns B; Kozarski M
    Artif Organs; 2014 Jun; 38(6):456-68. PubMed ID: 24117988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A transapical-to-aorta double lumen cannula-based neonate left ventricular assist device efficiently unloads the left ventricle in neonate lambs.
    Zhou C; Wang D; Ballard-Croft C; Zhao G; Reda HK; Topaz S; Zwischenberger J
    J Thorac Cardiovasc Surg; 2017 Jan; 153(1):175-182. PubMed ID: 27692763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro hemodynamic characterization of HeartMate II at 6000 rpm: Implications for weaning and recovery.
    Sunagawa G; Byram N; Karimov JH; Horvath DJ; Moazami N; Starling RC; Fukamachi K
    J Thorac Cardiovasc Surg; 2015 Aug; 150(2):343-8. PubMed ID: 26204865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of acute reduction of continuous-flow left ventricular assist device support on cardiac and exercise performance.
    Jakovljevic DG; George RS; Nunan D; Donovan G; Bougard RS; Yacoub MH; Birks EJ; Brodie DA
    Heart; 2010 Sep; 96(17):1390-5. PubMed ID: 20643664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemodynamic effects of partial ventricular support in chronic heart failure: results of simulation validated with in vivo data.
    Morley D; Litwak K; Ferber P; Spence P; Dowling R; Meyns B; Griffith B; Burkhoff D
    J Thorac Cardiovasc Surg; 2007 Jan; 133(1):21-8. PubMed ID: 17198776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exercise hemodynamics during extended continuous flow left ventricular assist device support: the response of systemic cardiovascular parameters and pump performance.
    Martina J; de Jonge N; Rutten M; Kirkels JH; Klöpping C; Rodermans B; Sukkel E; Hulstein N; Mol B; Lahpor J
    Artif Organs; 2013 Sep; 37(9):754-62. PubMed ID: 24074245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Hemodynamics and physical capacity in patients with left ventricular assist devices : An overview].
    Reiss N; Altesellmeier M; Mommertz S; Schmidt T; Schulte-Eistrup S; Willemsen D
    Herz; 2016 Sep; 41(6):507-13. PubMed ID: 26869330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HeartWare Left Ventricular Assist Device Exercise Hemodynamics With Speed Adjustment Based on Left Ventricular Filling Pressures.
    Ali O; Arnold AC; Cysyk J; Boehmer J; Zhu J; Sinoway LI; Eisen H; Weiss W
    ASAIO J; 2024 Jun; 70(6):e82-e88. PubMed ID: 38029762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological control of dual rotary pumps as a biventricular assist device using a master/slave approach.
    Stevens MC; Wilson S; Bradley A; Fraser J; Timms D
    Artif Organs; 2014 Sep; 38(9):766-74. PubMed ID: 24749848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of exercise and pump speed modulation on invasive hemodynamics in patients with centrifugal continuous-flow left ventricular assist devices.
    Muthiah K; Robson D; Prichard R; Walker R; Gupta S; Keogh AM; Macdonald PS; Woodard J; Kotlyar E; Dhital K; Granger E; Jansz P; Spratt P; Hayward CS
    J Heart Lung Transplant; 2015 Apr; 34(4):522-9. PubMed ID: 25662859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prevalence of exertional oscillatory ventilation in continuous-flow left ventricular assist device recipients.
    Pistono M; Gnemmi M; Imparato A; Komici K; Corrà U
    Eur J Prev Cardiol; 2018 Nov; 25(17):1838-1842. PubMed ID: 30247070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.