These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31104568)

  • 1. The effects of cue placement on the relative dominance of boundaries and landmark arrays in goal localization.
    Zhou R; Mou W
    Q J Exp Psychol (Hove); 2019 Nov; 72(11):2614-2631. PubMed ID: 31104568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of spatial stability and cue type on spatial learning: Implications for theories of parallel memory systems.
    Buckley MG; Austen JM; Myles LAM; Smith S; Ihssen N; Lew AR; McGregor A
    Cognition; 2021 Sep; 214():104802. PubMed ID: 34225248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boundary shapes guide selection of reference points in goal localization.
    Zhou R; Mou W
    Atten Percept Psychophys; 2019 Oct; 81(7):2482-2498. PubMed ID: 31243688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The limits of boundaries: unpacking localization and cognitive mapping relative to a boundary.
    Zhou R; Mou W
    Psychol Res; 2018 May; 82(3):617-633. PubMed ID: 28101648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining a boundary in goal localization: Infinite number of points or extended surfaces.
    Mou W; Zhou R
    J Exp Psychol Learn Mem Cogn; 2013 Jul; 39(4):1115-27. PubMed ID: 23088544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superior cognitive mapping through single landmark-related learning than through boundary-related learning.
    Zhou R; Mou W
    J Exp Psychol Learn Mem Cogn; 2016 Aug; 42(8):1316-23. PubMed ID: 26844582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facilitation of learning spatial relations among locations by visual cues: generality across spatial configurations.
    Sturz BR; Kelly DM; Brown MF
    Anim Cogn; 2010 Mar; 13(2):341-9. PubMed ID: 19777275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cue integration in spatial search for jointly learned landmarks but not for separately learned landmarks.
    Du Y; McMillan N; Madan CR; Spetch ML; Mou W
    J Exp Psychol Learn Mem Cogn; 2017 Dec; 43(12):1857-1871. PubMed ID: 28504533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Landmark stability: further studies pointing to a role in spatial learning.
    Biegler R; Morris RG
    Q J Exp Psychol B; 1996 Nov; 49(4):307-45. PubMed ID: 8962538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory.
    Doeller CF; King JA; Burgess N
    Proc Natl Acad Sci U S A; 2008 Apr; 105(15):5915-20. PubMed ID: 18408152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of landmarks and boundaries in the development of spatial memory.
    Bullens J; Nardini M; Doeller CF; Braddick O; Postma A; Burgess N
    Dev Sci; 2010 Jan; 13(1):170-80. PubMed ID: 20121873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learned predictiveness training modulates biases towards using boundary or landmark cues during navigation.
    Buckley MG; Smith AD; Haselgrove M
    Q J Exp Psychol (Hove); 2015; 68(6):1183-202. PubMed ID: 25409751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Looking beyond the boundaries: time to put landmarks back on the cognitive map?
    Lew AR
    Psychol Bull; 2011 May; 137(3):484-507. PubMed ID: 21299273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seeing the forest before the trees-spatial orientation in freshwater stingrays (Potamotrygon motoro) in a hole-board task.
    Schluessel V; Herzog H; Scherpenstein M
    Behav Processes; 2015 Oct; 119():105-15. PubMed ID: 26253033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Landmark use by Clark's nutcrackers (Nucifraga columbiana): influence of disorientation and cue rotation on distance and direction estimates.
    Kelly DM; Kamil AC; Cheng K
    Anim Cogn; 2010 Jan; 13(1):175-88. PubMed ID: 19579038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of visual map complexity on the attentional processing of landmarks.
    Keil J; Edler D; Kuchinke L; Dickmann F
    PLoS One; 2020; 15(3):e0229575. PubMed ID: 32119712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probabilistic cuing in large-scale environmental search.
    Smith AD; Hood BM; Gilchrist ID
    J Exp Psychol Learn Mem Cogn; 2010 May; 36(3):605-18. PubMed ID: 20438260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct error-correcting and incidental learning of location relative to landmarks and boundaries.
    Doeller CF; Burgess N
    Proc Natl Acad Sci U S A; 2008 Apr; 105(15):5909-14. PubMed ID: 18413609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning of absolute and relative distance and direction from discrete visual landmarks by pigeons (Columba livia).
    Sturz BR; Katz JS
    J Comp Psychol; 2009 Feb; 123(1):90-113. PubMed ID: 19236148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gender differences in landmark learning for virtual navigation: the role of distance to a goal.
    Chamizo VD; Artigas AA; Sansa J; Banterla F
    Behav Processes; 2011 Sep; 88(1):20-6. PubMed ID: 21736927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.