These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31105172)

  • 1. The Antioxidant Activity of Quercetin in Water Solution.
    Amorati R; Baschieri A; Cowden A; Valgimigli L
    Biomimetics (Basel); 2017 Jun; 2(3):. PubMed ID: 31105172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peroxyl Radical Reactions in Water Solution: A Gym for Proton-Coupled Electron-Transfer Theories.
    Amorati R; Baschieri A; Morroni G; Gambino R; Valgimigli L
    Chemistry; 2016 Jun; 22(23):7924-34. PubMed ID: 27111024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidant activity of highly hydroxylated fullerene C
    Grebowski J; Konopko A; Krokosz A; DiLabio GA; Litwinienko G
    Free Radic Biol Med; 2020 Nov; 160():734-744. PubMed ID: 32871231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DFT Study of the Direct Radical Scavenging Potency of Two Natural Catecholic Compounds.
    Amić A; Mastiľák Cagardová D
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenolic acids and their carboxylate anions: Thermodynamics of primary antioxidant action.
    Biela M; Kleinová A; Klein E
    Phytochemistry; 2022 Aug; 200():113254. PubMed ID: 35623472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFT/B3LYP study of the substituent effect on the reaction enthalpies of the individual steps of single electron transfer-proton transfer and sequential proton loss electron transfer mechanisms of phenols antioxidant action.
    Klein E; Lukes V
    J Phys Chem A; 2006 Nov; 110(44):12312-20. PubMed ID: 17078630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the radical scavenging activity of isoflavones: thermodynamics of O-H bond cleavage.
    Lengyel J; Rimarčík J; Vagánek A; Klein E
    Phys Chem Chem Phys; 2013 Jul; 15(26):10895-903. PubMed ID: 23698223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant action of deprotonated flavonoids: Thermodynamics of sequential proton-loss electron-transfer.
    Biela M; Rimarčík J; Senajová E; Kleinová A; Klein E
    Phytochemistry; 2020 Dec; 180():112528. PubMed ID: 33022536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negative-ion photoelectron spectroscopy, gas-phase acidity, and thermochemistry of the peroxyl radicals CH(3)OO and CH(3)CH(2)OO.
    Blanksby SJ; Ramond TM; Davico GE; Nimlos MR; Kato S; Bierbaum VM; Lineberger WC; Ellison GB; Okumura M
    J Am Chem Soc; 2001 Oct; 123(39):9585-96. PubMed ID: 11572679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antioxidant Activity of Magnolol and Honokiol: Kinetic and Mechanistic Investigations of Their Reaction with Peroxyl Radicals.
    Amorati R; Zotova J; Baschieri A; Valgimigli L
    J Org Chem; 2015 Nov; 80(21):10651-9. PubMed ID: 26447942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polypyrroles as antioxidants: kinetic studies on reactions of bilirubin and biliverdin dimethyl esters and synthetic model compounds with peroxyl radicals in solution. Chemical calculations on selected typical structures.
    Chepelev LL; Beshara CS; MacLean PD; Hatfield GL; Rand AA; Thompson A; Wright JS; Barclay LR
    J Org Chem; 2006 Jan; 71(1):22-30. PubMed ID: 16388613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fisetin and Robinetin antiradical activity under solvent effect: density functional theory study.
    Menacer R; Rekkab S; Kabouche Z
    J Mol Model; 2022 Aug; 28(8):240. PubMed ID: 35913682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The reaction of sulfenic acids with peroxyl radicals: insights into the radical-trapping antioxidant activity of plant-derived thiosulfinates.
    Amorati R; Lynett PT; Valgimigli L; Pratt DA
    Chemistry; 2012 May; 18(20):6370-9. PubMed ID: 22473818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical Study for Exploring the Diglycoside Substituent Effect on the Antioxidative Capability of Isorhamnetin Extracted from
    Thong NM; Vo QV; Huyen TL; Bay MV; Tuan D; Nam PC
    ACS Omega; 2019 Sep; 4(12):14996-15003. PubMed ID: 31552341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free radical scavenging mechanism of 1,3,4-oxadiazole derivatives: thermodynamics of O-H and N-H bond cleavage.
    Alisi IO; Uzairu A; Abechi SE
    Heliyon; 2020 Mar; 6(3):e03683. PubMed ID: 32258501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and thermodynamic aspects of the chain-breaking antioxidant activity of ascorbic acid derivatives in non-aqueous media.
    Amorati R; Pedulli GF; Valgimigli L
    Org Biomol Chem; 2011 May; 9(10):3792-800. PubMed ID: 21479296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the direct scavenging activity of melatonin towards hydroxyl and a series of peroxyl radicals.
    Galano A
    Phys Chem Chem Phys; 2011 Apr; 13(15):7178-88. PubMed ID: 21409256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitroxides as Building Blocks for Nanoantioxidants.
    Genovese D; Baschieri A; Vona D; Baboi RE; Mollica F; Prodi L; Amorati R; Zaccheroni N
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31996-32004. PubMed ID: 34156238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acidity of hydroxyl groups: an overlooked influence on antiradical properties of flavonoids.
    Musialik M; Kuzmicz R; Pawłowski TS; Litwinienko G
    J Org Chem; 2009 Apr; 74(7):2699-709. PubMed ID: 19275193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antioxidant properties of phenolic Schiff bases: structure-activity relationship and mechanism of action.
    Anouar el H; Raweh S; Bayach I; Taha M; Baharudin MS; Di Meo F; Hasan MH; Adam A; Ismail NH; Weber JF; Trouillas P
    J Comput Aided Mol Des; 2013 Nov; 27(11):951-64. PubMed ID: 24243063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.