BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 31105383)

  • 1. Model Driven Optimization of Magnetic Anisotropy of Exchange-coupled Core-Shell Ferrite Nanoparticles for Maximal Hysteretic Loss.
    Zhang Q; Castellanos-Rubio I; Munshi R; Orue I; Pelaz B; Gries KI; Parak WJ; Del Pino P; Pralle A
    Chem Mater; 2015 Nov; 27(21):7380-7387. PubMed ID: 31105383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring Interfacial Exchange Anisotropy in Hard-Soft Core-Shell Ferrite Nanoparticles for Magnetic Hyperthermia Applications.
    Narayanaswamy V; Al-Omari IA; Kamzin AS; Issa B; Obaidat IM
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization.
    Chen R; Christiansen MG; Anikeeva P
    ACS Nano; 2013 Oct; 7(10):8990-9000. PubMed ID: 24016039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperthermia of Magnetically Soft-Soft Core-Shell Ferrite Nanoparticles.
    Narayanaswamy V; Jagal J; Khurshid H; Al-Omari IA; Haider M; Kamzin AS; Obaidat IM; Issa B
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong interfacial coupling through exchange interactions in soft/hard core-shell nanoparticles as a function of cationic distribution.
    Sartori K; Cotin G; Bouillet C; Halté V; Bégin-Colin S; Choueikani F; Pichon BP
    Nanoscale; 2019 Jul; 11(27):12946-12958. PubMed ID: 31259329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Core-Shell Structures of Magnetic Ferrite Nanoparticles for High Hyperthermia Performance.
    Darwish MSA; Kim H; Lee H; Ryu C; Young Lee J; Yoon J
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32455690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling the dominant magnetic relaxation mechanisms for magnetic hyperthermia in bimagnetic core-shell nanoparticles.
    Fabris F; Lima E; De Biasi E; Troiani HE; Vásquez Mansilla M; Torres TE; Fernández Pacheco R; Ibarra MR; Goya GF; Zysler RD; Winkler EL
    Nanoscale; 2019 Feb; 11(7):3164-3172. PubMed ID: 30520920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exchange-bias and magnetic anisotropy fields in core-shell ferrite nanoparticles.
    Silva FG; Depeyrot J; Raikher YL; Stepanov VI; Poperechny IS; Aquino R; Ballon G; Geshev J; Dubois E; Perzynski R
    Sci Rep; 2021 Mar; 11(1):5474. PubMed ID: 33750828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical and physical characterizations of spinel ferrite nanoparticles containing Nd and B elements.
    Iwamoto T; Komorida Y; Mito M; Takahara A
    J Colloid Interface Sci; 2010 May; 345(2):143-8. PubMed ID: 20167330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia.
    Wang C; Hsu CH; Li Z; Hwang LP; Lin YC; Chou PT; Lin YY
    Int J Nanomedicine; 2017; 12():6273-6287. PubMed ID: 28894366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.
    Céspedes E; Byrne JM; Farrow N; Moise S; Coker VS; Bencsik M; Lloyd JR; Telling ND
    Nanoscale; 2014 Nov; 6(21):12958-70. PubMed ID: 25232657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, characterization and potential application of MnZn ferrite and MnZn ferrite @ Au nanoparticles.
    Wang X; Wang L; Lim II; Bao K; Mott D; Park HY; Luo J; Hao S; Zhong CJ
    J Nanosci Nanotechnol; 2009 May; 9(5):3005-12. PubMed ID: 19452962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, characterization and superparamagnetic resonance studies of ZnFe2O4 nanoparticles.
    Köseoğlu Y; Yildiz H; Yilgin R
    J Nanosci Nanotechnol; 2012 Mar; 12(3):2261-9. PubMed ID: 22755046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia.
    Fortin JP; Wilhelm C; Servais J; Ménager C; Bacri JC; Gazeau F
    J Am Chem Soc; 2007 Mar; 129(9):2628-35. PubMed ID: 17266310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Room Temperature Blocked Magnetic Nanoparticles Based on Ferrite Promoted by a Three-Step Thermal Decomposition Process.
    Sartori K; Choueikani F; Gloter A; Begin-Colin S; Taverna D; Pichon BP
    J Am Chem Soc; 2019 Jun; 141(25):9783-9787. PubMed ID: 31149820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of magneto-crystalline anisotropy on the properties of hard and soft magnetic ferrite nanoparticles.
    Jalili H; Aslibeiki B; Ghotbi Varzaneh A; Chernenko VA
    Beilstein J Nanotechnol; 2019; 10():1348-1359. PubMed ID: 31355103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia.
    Makridis A; Chatzitheodorou I; Topouridou K; Yavropoulou MP; Angelakeris M; Dendrinou-Samara C
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():663-70. PubMed ID: 27040263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Detailed Investigation of the Onion Structure of Exchanged Coupled Magnetic Fe
    Sartori K; Musat A; Choueikani F; Grenèche JM; Hettler S; Bencok P; Begin-Colin S; Steadman P; Arenal R; Pichon BP
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16784-16800. PubMed ID: 33780236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of Magnetic Ferrite Nanoparticles with High Hyperthermia Performance via a Controlled Co-Precipitation Method.
    Darwish MSA; Kim H; Lee H; Ryu C; Lee JY; Yoon J
    Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31426427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interplay between inter- and intraparticle interactions in bi-magnetic core/shell nanoparticles.
    Omelyanchik A; Villa S; Vasilakaki M; Singh G; Ferretti AM; Ponti A; Canepa F; Margaris G; Trohidou KN; Peddis D
    Nanoscale Adv; 2021 Dec; 3(24):6912-6924. PubMed ID: 36132365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.