These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31105420)

  • 1. Characterization and Control of a Pneumatic Motor for MR-conditional Robotic Applications.
    Chen Y; Godage IS; Tse ZTH; Webster RJ; Barth EJ
    IEEE ASME Trans Mechatron; 2017 Dec; 22(6):2780-2789. PubMed ID: 31105420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An MR-conditional high-torque pneumatic stepper motor for MRI-guided and robot-assisted intervention.
    Chen Y; Kwok KW; Tse ZT
    Ann Biomed Eng; 2014 Sep; 42(9):1823-33. PubMed ID: 24957635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 10-mm MR-Conditional Unidirectional Pneumatic Stepper Motor.
    Chen Y; Mershon CD; Tse ZT
    IEEE ASME Trans Mechatron; 2015 Apr; 20(2):782-788. PubMed ID: 25419104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MR-Conditional Actuations: A Review.
    Xiao Q; Monfaredi R; Musa M; Cleary K; Chen Y
    Ann Biomed Eng; 2020 Dec; 48(12):2707-2733. PubMed ID: 32856179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Speed Pneumatic Stepper Motor for MRI Applications.
    Boland BL; Xu S; Wood B; Tse ZTH
    Ann Biomed Eng; 2019 Mar; 47(3):826-835. PubMed ID: 30552529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and Control of an MR-Safe Pneumatic Radial Inflow Motor and Encoder (PRIME).
    Gunderman AL; Azizkhani M; Sengupta S; Cleary K; Chen Y
    IEEE ASME Trans Mechatron; 2024 Jun; 29(3):1714-1725. PubMed ID: 38895598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Open Source MR-Safe Pneumatic Radial Inflow Motor and Encoder (PRIME): Design and Manufacturing Guidelines.
    Gunderman AL; Azizkhani M; Sengupta S; Cleary K; Chen Y
    Int Symp Med Robot; 2023 Apr; 2023():. PubMed ID: 38073863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal-to-noise ratio evaluation of magnetic resonance images in the presence of an ultrasonic motor.
    Shokrollahi P; Drake JM; Goldenberg AA
    Biomed Eng Online; 2017 Apr; 16(1):45. PubMed ID: 28410615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and Testing of a Magnetic Resonance (MR) Conditional Afterloader for Source Tracking in Magnetic Resonance Imaging-Guided High-Dose-Rate (HDR) Brachytherapy.
    Beld E; Seevinck PR; Schuurman J; Viergever MA; Lagendijk JJW; Moerland MA
    Int J Radiat Oncol Biol Phys; 2018 Nov; 102(4):960-968. PubMed ID: 29891205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Type of Motor: Pneumatic Step Motor.
    Stoianovici D; Patriciu A; Petrisor D; Mazilu D; Kavoussi L
    IEEE ASME Trans Mechatron; 2007 Feb; 12(1):98-106. PubMed ID: 21528106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soft Electromagnetic Motor and Soft Magnetic Sensors for Synchronous Rotary Motion.
    Kohls ND; Balak R; Ruddy BP; Mazumdar YC
    Soft Robot; 2023 Oct; 10(5):912-922. PubMed ID: 36976757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution small field-of-view magnetic resonance image acquisition system using a small planar coil and a pneumatic manipulator in an open MRI scanner.
    Miki K; Masamune K
    Int J Comput Assist Radiol Surg; 2015 Oct; 10(10):1687-97. PubMed ID: 25549798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MR conditional prostate intervention systems and actuations review.
    Liang H; Tse ZTH
    Proc Inst Mech Eng H; 2023 Jan; 237(1):18-34. PubMed ID: 36458323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robotic System for MRI-guided Focal Laser Ablation in the Prostate.
    Chen Y; Squires A; Seifabadi R; Xu S; Agrawal H; Bernardo M; Pinto P; Choyke P; Wood B; Tse ZTH
    IEEE ASME Trans Mechatron; 2017 Feb; 22(1):107-114. PubMed ID: 31080341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A pneumatic random-access memory for controlling soft robots.
    Hoang S; Karydis K; Brisk P; Grover WH
    PLoS One; 2021; 16(7):e0254524. PubMed ID: 34270580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An MRI-compatible surgical robot for precise radiological interventions.
    Hempel E; Fischer H; Gumb L; Höhn T; Krause H; Voges U; Breitwieser H; Gutmann B; Durke J; Bock M; Melzer A
    Comput Aided Surg; 2003; 8(4):180-91. PubMed ID: 15360099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MRI compatibility of robot actuation techniques--a comparative study.
    Fischer GS; Krieger A; Iordachita I; Csoma C; Whitcomb LL; Gabor F
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):509-17. PubMed ID: 18982643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Instrument visualization using conventional and compressed sensing SEMAC for interventional MRI at 3T.
    Sonnow L; Gilson WD; Raithel E; Nittka M; Wacker F; Fritz J
    J Magn Reson Imaging; 2018 May; 47(5):1306-1315. PubMed ID: 28940951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A variable torque motor compatible with magnetic resonance imaging.
    Roeck WW; Ha SH; Farmaka S; Nalcioglu O
    Rev Sci Instrum; 2009 Apr; 80(4):046108. PubMed ID: 19405704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "MRI Stealth" robot for prostate interventions.
    Stoianovici D; Song D; Petrisor D; Ursu D; Mazilu D; Muntener M; Schar M; Patriciu A
    Minim Invasive Ther Allied Technol; 2007; 16(4):241-8. PubMed ID: 17763098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.