These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31105455)

  • 1. General rogue wave solutions of the coupled Fokas-Lenells equations and non-recursive Darboux transformation.
    Ye Y; Zhou Y; Chen S; Baronio F; Grelu P
    Proc Math Phys Eng Sci; 2019 Apr; 475(2224):20180806. PubMed ID: 31105455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers.
    Wang L; Zhu YJ; Qi FH; Li M; Guo R
    Chaos; 2015 Jun; 25(6):063111. PubMed ID: 26117105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulational instability and higher-order rogue waves with parameters modulation in a coupled integrable AB system via the generalized Darboux transformation.
    Wen XY; Yan Z
    Chaos; 2015 Dec; 25(12):123115. PubMed ID: 26723154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peregrine Solitons Beyond the Threefold Limit and Their Two-Soliton Interactions.
    Chen S; Ye Y; Soto-Crespo JM; Grelu P; Baronio F
    Phys Rev Lett; 2018 Sep; 121(10):104101. PubMed ID: 30240257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions.
    Guo B; Ling L; Liu QP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026607. PubMed ID: 22463349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized perturbation (n, M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation.
    Wen XY; Yang Y; Yan Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012917. PubMed ID: 26274257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Higher-order matrix nonlinear Schrödinger equation with the negative coherent coupling: binary Darboux transformation, vector solitons, breathers and rogue waves.
    Du Z; Nie Y; Guo Q
    Opt Express; 2023 Dec; 31(25):42507-42523. PubMed ID: 38087623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Several reverse-time integrable nonlocal nonlinear equations: Rogue-wave solutions.
    Yang B; Chen Y
    Chaos; 2018 May; 28(5):053104. PubMed ID: 29857682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elliptic-rogue waves and modulational instability in nonlinear soliton equations.
    Ling L; Sun X
    Phys Rev E; 2024 Jun; 109(6-1):064209. PubMed ID: 39020908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rogue waves, rational solitons, and modulational instability in an integrable fifth-order nonlinear Schrödinger equation.
    Yang Y; Yan Z; Malomed BA
    Chaos; 2015 Oct; 25(10):103112. PubMed ID: 26520078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triangular rogue wave cascades.
    Kedziora DJ; Ankiewicz A; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056602. PubMed ID: 23214898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vector semirational rogue waves and modulation instability for the coupled higher-order nonlinear Schrödinger equations in the birefringent optical fibers.
    Sun WR; Liu DY; Xie XY
    Chaos; 2017 Apr; 27(4):043114. PubMed ID: 28456173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rogue waves for the fourth-order nonlinear Schrödinger equation on the periodic background.
    Zhang HQ; Chen F
    Chaos; 2021 Feb; 31(2):023129. PubMed ID: 33653045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dark-bright solitons and semirational rogue waves for the coupled Sasa-Satsuma equations.
    Liu L; Tian B; Yuan YQ; Du Z
    Phys Rev E; 2018 May; 97(5-1):052217. PubMed ID: 29906968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulational instability, beak-shaped rogue waves, multi-dark-dark solitons and dynamics in pair-transition-coupled nonlinear Schrödinger equations.
    Zhang G; Yan Z; Wen XY
    Proc Math Phys Eng Sci; 2017 Jul; 473(2203):20170243. PubMed ID: 28804266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Twisted rogue-wave pairs in the Sasa-Satsuma equation.
    Chen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023202. PubMed ID: 24032957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation.
    He J; Wang L; Li L; Porsezian K; Erdélyi R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062917. PubMed ID: 25019861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-rational solutions of the third-type Davey-Stewartson equation.
    Rao J; Porsezian K; He J
    Chaos; 2017 Aug; 27(8):083115. PubMed ID: 28863505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation.
    Tao Y; He J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026601. PubMed ID: 22463343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical and experimental evidence of non-symmetric doubly localized rogue waves.
    He J; Guo L; Zhang Y; Chabchoub A
    Proc Math Phys Eng Sci; 2014 Nov; 470(2171):20140318. PubMed ID: 25383023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.