These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 31105512)

  • 1. The Temperature Dependence of Sleep.
    Harding EC; Franks NP; Wisden W
    Front Neurosci; 2019; 13():336. PubMed ID: 31105512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Neuronal Hub Binding Sleep Initiation and Body Cooling in Response to a Warm External Stimulus.
    Harding EC; Yu X; Miao A; Andrews N; Ma Y; Ye Z; Lignos L; Miracca G; Ba W; Yustos R; Vyssotski AL; Wisden W; Franks NP
    Curr Biol; 2018 Jul; 28(14):2263-2273.e4. PubMed ID: 30017485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sleep and thermoregulation.
    Harding EC; Franks NP; Wisden W
    Curr Opin Physiol; 2020 Jun; 15():7-13. PubMed ID: 32617439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Sleep and Body Temperature].
    Ishihara A; Park I; Tokuyama K
    Brain Nerve; 2022 Feb; 74(2):173-178. PubMed ID: 35108682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Body temperature and sleep.
    Szymusiak R
    Handb Clin Neurol; 2018; 156():341-351. PubMed ID: 30454599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal discharge of preoptic/anterior hypothalamic thermosensitive neurons: relation to NREM sleep.
    Alam MN; McGinty D; Szymusiak R
    Am J Physiol; 1995 Nov; 269(5 Pt 2):R1240-9. PubMed ID: 7503316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Perspectives that Challenge Brain Warming as the Primary Function of REM Sleep.
    Ungurean G; Barrillot B; Martinez-Gonzalez D; Libourel PA; Rattenborg NC
    iScience; 2020 Nov; 23(11):101696. PubMed ID: 33196022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric Oxide Synthase Neurons in the Preoptic Hypothalamus Are NREM and REM Sleep-Active and Lower Body Temperature.
    Harding EC; Ba W; Zahir R; Yu X; Yustos R; Hsieh B; Lignos L; Vyssotski AL; Merkle FT; Constandinou TG; Franks NP; Wisden W
    Front Neurosci; 2021; 15():709825. PubMed ID: 34720852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A thermoregulatory model of sleep control.
    Nakao M; McGinty D; Szymusiak R; Yamamoto M
    Jpn J Physiol; 1995; 45(2):291-309. PubMed ID: 7563965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preoptic/anterior hypothalamic neurons: thermosensitivity in wakefulness and non rapid eye movement sleep.
    Alam MN; McGinty D; Szymusiak R
    Brain Res; 1996 Apr; 718(1-2):76-82. PubMed ID: 8773767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. REM and NREM sleep as natural accompaniments of the evolution of warm-bloodedness.
    Lee Kavanau J
    Neurosci Biobehav Rev; 2002 Dec; 26(8):889-906. PubMed ID: 12667495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preoptic/anterior hypothalamic warming increases EEG delta frequency activity within non-rapid eye movement sleep.
    McGinty D; Szymusiak R; Thomson D
    Brain Res; 1994 Dec; 667(2):273-7. PubMed ID: 7697366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Neurochemical mechanisms of sleep regulation].
    Glas Srp Akad Nauka Med; 2009; (50):97-109. PubMed ID: 20666118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. State transitions between wake and sleep, and within the ultradian cycle, with focus on the link to neuronal activity.
    Merica H; Fortune RD
    Sleep Med Rev; 2004 Dec; 8(6):473-85. PubMed ID: 15556379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cutaneous warming promotes sleep onset.
    Raymann RJ; Swaab DF; Van Someren EJ
    Am J Physiol Regul Integr Comp Physiol; 2005 Jun; 288(6):R1589-97. PubMed ID: 15677527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preoptic area warming inhibits wake-active neurons in the perifornical lateral hypothalamus.
    Methippara MM; Alam MN; Szymusiak R; McGinty D
    Brain Res; 2003 Jan; 960(1-2):165-73. PubMed ID: 12505669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced slow-wave EEG activity and thermoregulatory impairment following the inhibition of the lateral hypothalamus in the rat.
    Cerri M; Del Vecchio F; Mastrotto M; Luppi M; Martelli D; Perez E; Tupone D; Zamboni G; Amici R
    PLoS One; 2014; 9(11):e112849. PubMed ID: 25398141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Keeping cool: a hypothesis about the mechanisms and functions of slow-wave sleep.
    McGinty D; Szymusiak R
    Trends Neurosci; 1990 Dec; 13(12):480-7. PubMed ID: 1703678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discharge modulation of rat dorsal raphe neurons during sleep and waking: effects of preoptic/basal forebrain warming.
    Guzmán-Marín R; Alam MN; Szymusiak R; Drucker-Colín R; Gong H; McGinty D
    Brain Res; 2000 Sep; 875(1-2):23-34. PubMed ID: 10967295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. More than a marker: interaction between the circadian regulation of temperature and sleep, age-related changes, and treatment possibilities.
    Van Someren EJ
    Chronobiol Int; 2000 May; 17(3):313-54. PubMed ID: 10841209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.