These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 31105677)

  • 21. Co-expression of two genes, a chitinase (chit42) and proteinase (prb1), implicated in mycoparasitism by Trichoderma hamatum.
    Steyaert JM; Stewart A; Jaspers MV; Carpenter M; Ridgway HJ
    Mycologia; 2004; 96(6):1245-52. PubMed ID: 21148948
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of Volatiles from the Endophytic Fungus
    Phoka N; Suwannarach N; Lumyong S; Ito SI; Matsui K; Arikit S; Sunpapao A
    J Fungi (Basel); 2020 Dec; 6(4):. PubMed ID: 33291279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The
    Speckbacher V; Ruzsanyi V; Wigger M; Zeilinger S
    Molecules; 2020 Jan; 25(1):. PubMed ID: 31947876
    [No Abstract]   [Full Text] [Related]  

  • 24. T-DNA insertion, plasmid rescue and integration analysis in the model mycorrhizal fungus Laccaria bicolor.
    Kemppainen M; Duplessis S; Martin F; Pardo AG
    Microb Biotechnol; 2008 May; 1(3):258-69. PubMed ID: 21261845
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fusarium oxysporum induces the production of proteins and volatile organic compounds by Trichoderma harzianum T-E5.
    Zhang F; Yang X; Ran W; Shen Q
    FEMS Microbiol Lett; 2014 Oct; 359(1):116-23. PubMed ID: 25135494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pseudomonas fluorescens increases mycorrhization and modulates expression of antifungal defense response genes in roots of aspen seedlings.
    Shinde S; Zerbs S; Collart FR; Cumming JR; Noirot P; Larsen PE
    BMC Plant Biol; 2019 Jan; 19(1):4. PubMed ID: 30606121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trichoderma spp. volatile organic compounds protect grapevine plants by activating defense-related processes against downy mildew.
    Lazazzara V; Vicelli B; Bueschl C; Parich A; Pertot I; Schuhmacher R; Perazzolli M
    Physiol Plant; 2021 Aug; 172(4):1950-1965. PubMed ID: 33783004
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mycorrhiza-induced mycocypins of Laccaria bicolor are potent protease inhibitors with nematotoxic and collembola antifeedant activity.
    Plett JM; Sabotič J; Vogt E; Snijders F; Kohler A; Nielsen UN; Künzler M; Martin F; Veneault-Fourrey C
    Environ Microbiol; 2022 Oct; 24(10):4607-4622. PubMed ID: 35818672
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in Peptaibol Production of
    Tamandegani PR; Marik T; Zafari D; Balázs D; Vágvölgyi C; Szekeres A; Kredics L
    Biomolecules; 2020 May; 10(5):. PubMed ID: 32392805
    [No Abstract]   [Full Text] [Related]  

  • 30. Volatile Organic Compound (VOC) Profiles of Different
    Gualtieri L; Monti MM; Mele F; Russo A; Pedata PA; Ruocco M
    J Fungi (Basel); 2022 Sep; 8(10):. PubMed ID: 36294554
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trichoderma atroviride LZ42 releases volatile organic compounds promoting plant growth and suppressing Fusarium wilt disease in tomato seedlings.
    Rao Y; Zeng L; Jiang H; Mei L; Wang Y
    BMC Microbiol; 2022 Apr; 22(1):88. PubMed ID: 35382732
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genomic and transcriptomic analysis of Laccaria bicolor CAZome reveals insights into polysaccharides remodelling during symbiosis establishment.
    Veneault-Fourrey C; Commun C; Kohler A; Morin E; Balestrini R; Plett J; Danchin E; Coutinho P; Wiebenga A; de Vries RP; Henrissat B; Martin F
    Fungal Genet Biol; 2014 Nov; 72():168-181. PubMed ID: 25173823
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Transcriptomic Atlas of the Ectomycorrhizal Fungus
    Ruytinx J; Miyauchi S; Hartmann-Wittulsky S; de Freitas Pereira M; Guinet F; Churin JL; Put C; Le Tacon F; Veneault-Fourrey C; Martin F; Kohler A
    Microorganisms; 2021 Dec; 9(12):. PubMed ID: 34946213
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production.
    Qualhato TF; Lopes FA; Steindorff AS; Brandão RS; Jesuino RS; Ulhoa CJ
    Biotechnol Lett; 2013 Sep; 35(9):1461-8. PubMed ID: 23690037
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth.
    Lee S; Hung R; Yap M; Bennett JW
    Arch Microbiol; 2015 Jun; 197(5):723-7. PubMed ID: 25771960
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mycelial Inhibition of
    Rafael da Silva L; Pereira Costa Muniz PH; Henrique Silva Peixoto G; Gonçalves Dias Luccas BE; Tavares da Silva JB; Marques de Mello SC
    Pak J Biol Sci; 2021 Jan; 24(4):527-536. PubMed ID: 34486312
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Symbiotic Fungi of an Ambrosia Beetle Alter the Volatile Bouquet of Cork Oak Seedlings.
    Nones S; Sousa E; Holighaus G
    Phytopathology; 2022 Sep; 112(9):1965-1978. PubMed ID: 35357159
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of effector-like proteins in Trichoderma spp. and role of a hydrophobin in the plant-fungus interaction and mycoparasitism.
    Guzmán-Guzmán P; Alemán-Duarte MI; Delaye L; Herrera-Estrella A; Olmedo-Monfil V
    BMC Genet; 2017 Feb; 18(1):16. PubMed ID: 28201981
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ectomycorrhizal fungi, two species of Laccaria, differentially block the migration and accumulation of cadmium and copper in Pinus densiflora.
    Quan L; Shi L; Zhang S; Yao Q; Yang Q; Zhu Y; Liu Y; Lian C; Chen Y; Shen Z; Duan K; Xia Y
    Chemosphere; 2023 Sep; 334():138857. PubMed ID: 37187383
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deciphering
    Alfiky A; Weisskopf L
    J Fungi (Basel); 2021 Jan; 7(1):. PubMed ID: 33477406
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.