BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31106007)

  • 1. A Method for Measuring Fluid Pressures in the Shoe-Floor-Fluid Interface: Application to Shoe Tread Evaluation.
    Singh G; Beschorner KE
    IIE Trans Occup; 2014; 2(2):53-59. PubMed ID: 31106007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluid pressures at the shoe-floor-contaminant interface during slips: effects of tread and implications on slip severity.
    Beschorner KE; Albert DL; Chambers AJ; Redfern MS
    J Biomech; 2014 Jan; 47(2):458-63. PubMed ID: 24267270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Traction performance across the life of slip-resistant footwear: Preliminary results from a longitudinal study.
    Hemler SL; Pliner EM; Redfern MS; Haight JM; Beschorner KE
    J Safety Res; 2020 Sep; 74():219-225. PubMed ID: 32951786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shoe sole tread designs and outcomes of slipping and falling on slippery floor surfaces.
    Liu LW; Lee YH; Lin CJ; Li KW; Chen CY
    PLoS One; 2013; 8(7):e68989. PubMed ID: 23894388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in under-shoe traction and fluid drainage for progressively worn shoe tread.
    Hemler SL; Charbonneau DN; Iraqi A; Redfern MS; Haight JM; Moyer BE; Beschorner KE
    Appl Ergon; 2019 Oct; 80():35-42. PubMed ID: 31280808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Worn region size of shoe outsole impacts human slips: Testing a mechanistic model.
    Sundaram VH; Hemler SL; Chanda A; Haight JM; Redfern MS; Beschorner KE
    J Biomech; 2020 May; 105():109797. PubMed ID: 32423543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of shoe sole tread groove depth on the friction coefficient with different tread groove widths, floors and contaminants.
    Li KW; Wu HH; Lin YC
    Appl Ergon; 2006 Nov; 37(6):743-8. PubMed ID: 16427022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical modeling of footwear-fluid-floor interaction during slips.
    Gupta S; Chanda A
    J Biomech; 2023 Jul; 156():111690. PubMed ID: 37356270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait kinetics impact shoe tread wear rate.
    Hemler SL; Sider JR; Redfern MS; Beschorner KE
    Gait Posture; 2021 May; 86():157-161. PubMed ID: 33735824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of a portable shoe tread scanner to predict slip risk.
    Hemler SL; Beschorner KE
    J Safety Res; 2023 Sep; 86():5-11. PubMed ID: 37718069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shoe Tread Wear Occurs Primarily during Early Stance and Precedes the Peak Required Coefficient of Friction.
    Bharthi R; Sukinik JR; Hemler SL; Beschorner KE
    Footwear Sci; 2022; 14(3):219-228. PubMed ID: 37583564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of natural shoe wear on traction performance: a longitudinal study.
    Hemler SL; Pliner EM; Redfern MS; Haight JM; Beschorner KE
    Footwear Sci; 2022; 14(1):1-12. PubMed ID: 37701063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prospective validity assessment of a friction prediction model based on tread outsole features of slip-resistant shoes.
    Beschorner KE; Nasarwanji M; Deschler C; Hemler SL
    Appl Ergon; 2024 Jan; 114():104110. PubMed ID: 37595332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of friction and assessment of slip resistance of new and used footwear soles on contaminated floors.
    Grönqvist R
    Ergonomics; 1995 Feb; 38(2):224-241. PubMed ID: 28084937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the Influence of Spatiotemporal Gait Characteristics on Shoe Wear Rate.
    Griffin SC; Hemler SL; Beschorner KE
    IISE Trans Occup Ergon Hum Factors; 2022; 10(1):1-6. PubMed ID: 34781847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of slip resistance under footwear materials, tread designs, floor contamination, and floor inclination conditions.
    Li KW; Chen CY; Chen CC; Liu L
    Work; 2012; 41 Suppl 1():3349-51. PubMed ID: 22317227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance testing of work shoes labeled as slip resistant.
    Jones T; Iraqi A; Beschorner K
    Appl Ergon; 2018 Apr; 68():304-312. PubMed ID: 29409649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of shoe sole tread groove depth on the gait parameters during walking on dry and slippery surface.
    Ziaei M; Nabavi SH; Mokhtarinia HR; Tabatabai Ghomshe SF
    Int J Occup Environ Med; 2013 Jan; 4(1):27-35. PubMed ID: 23279795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of workers' shoe wear on objective and subjective assessment of slipperiness.
    Chiou SY; Bhattacharya A; Succop PA
    Am Ind Hyg Assoc J; 1996 Sep; 57(9):825-31. PubMed ID: 8865591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Hydrodynamic Conditions under Worn Shoes using the Tapered-Wedge Solution of Reynolds Equation.
    Hemler SL; Charbonneau DN; Beschorner KE
    Tribol Int; 2020 May; 145():. PubMed ID: 32863531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.