These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31106007)

  • 21. An observational ergonomic tool for assessing the worn condition of slip-resistant shoes.
    Beschorner KE; Siegel JL; Hemler SL; Sundaram VH; Chanda A; Iraqi A; Haight JM; Redfern MS
    Appl Ergon; 2020 Oct; 88():103140. PubMed ID: 32678768
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predictive multiscale computational model of shoe-floor coefficient of friction.
    Moghaddam SRM; Acharya A; Redfern MS; Beschorner KE
    J Biomech; 2018 Jan; 66():145-152. PubMed ID: 29183657
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of shoe soling tread groove width on the coefficient of friction with different sole materials, floors, and contaminants.
    Li KW; Chen CJ
    Appl Ergon; 2004 Nov; 35(6):499-507. PubMed ID: 15374757
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differences in Friction Performance between New and Worn Shoes.
    Cook A; Hemler S; Sundaram V; Chanda A; Beschorner K
    IISE Trans Occup Ergon Hum Factors; 2020; 8(4):209-214. PubMed ID: 33955322
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of slip testing parameters on measured coefficient of friction.
    Beschorner KE; Redfern MS; Porter WL; Debski RE
    Appl Ergon; 2007 Nov; 38(6):773-80. PubMed ID: 17196925
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Validating the ability of a portable shoe-floor friction testing device, NextSTEPS, to predict human slips.
    Beschorner KE; Chanda A; Moyer BE; Reasinger A; Griffin SC; Johnston IM
    Appl Ergon; 2023 Jan; 106():103854. PubMed ID: 35973317
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shoe-Floor Interactions in Human Walking With Slips: Modeling and Experiments.
    Trkov M; Yi J; Liu T; Li K
    J Biomech Eng; 2018 Mar; 140(3):. PubMed ID: 29055127
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coefficient of friction testing parameters influence the prediction of human slips.
    Iraqi A; Cham R; Redfern MS; Beschorner KE
    Appl Ergon; 2018 Jul; 70():118-126. PubMed ID: 29866300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temporal changes in the required shoe-floor friction when walking following an induced slip.
    Beringer DN; Nussbaum MA; Madigan ML
    PLoS One; 2014; 9(5):e96525. PubMed ID: 24789299
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In contrast to slip-resistant shoes, fluid drainage capacity explains friction performance across shoes that are not slip-resistant.
    Meehan EE; Vidic N; Beschorner KE
    Appl Ergon; 2022 Apr; 100():103663. PubMed ID: 34894586
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Factors associated with use of slip-resistant shoes in US limited-service restaurant workers.
    Verma SK; Courtney TK; Corns HL; Huang YH; Lombardi DA; Chang WR; Brennan MJ; Perry MJ
    Inj Prev; 2012 Jun; 18(3):176-81. PubMed ID: 21865205
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional levels of floor surface roughness for the prevention of slips and falls: clean-and-dry and soapsuds-covered wet surfaces.
    Kim IJ; Hsiao H; Simeonov P
    Appl Ergon; 2013 Jan; 44(1):58-64. PubMed ID: 22641153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of footwear tread groove parameters on available friction.
    Blanchette MG; Powers CM
    Appl Ergon; 2015 Sep; 50():237-41. PubMed ID: 25959339
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational Model of Shoe Wear Progression: Comparison with Experimental Results.
    Moghaddam SRM; Hemler SL; Redfern MS; Jacobs TD; Beschorner KE
    Wear; 2019 Mar; 422-423():235-241. PubMed ID: 37200982
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of footwear sole hardness on slip initiation in young adults.
    Tsai YJ; Powers CM
    J Forensic Sci; 2008 Jul; 53(4):884-8. PubMed ID: 18482376
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of footwear sole hardness on slip characteristics and slip-induced falls in young adults.
    Tsai YJ; Powers CM
    J Forensic Sci; 2013 Jan; 58(1):46-50. PubMed ID: 23062013
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Footwear traction and lower extremity joint loading.
    Wannop JW; Worobets JT; Stefanyshyn DJ
    Am J Sports Med; 2010 Jun; 38(6):1221-8. PubMed ID: 20348282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Can the use of a terminal device augment plantar pressure reduction with a total contact cast?
    Dhalla R; Johnson JE; Engsberg J
    Foot Ankle Int; 2003 Jun; 24(6):500-5. PubMed ID: 12854672
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimizing footwear for older people at risk of falls.
    Menant JC; Steele JR; Menz HB; Munro BJ; Lord SR
    J Rehabil Res Dev; 2008; 45(8):1167-81. PubMed ID: 19235118
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Duration of slip-resistant shoe usage and the rate of slipping in limited-service restaurants: results from a prospective and crossover study.
    Verma SK; Zhao Z; Courtney TK; Chang WR; Lombardi DA; Huang YH; Brennan MJ; Perry MJ
    Ergonomics; 2014; 57(12):1919-26. PubMed ID: 25205136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.