BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 31106304)

  • 1. A Novel Deep Learning Framework on Brain Functional Networks for Early MCI Diagnosis.
    Kam TE; Zhang H; Shen D
    Med Image Comput Comput Assist Interv; 2018 Sep; 11072():293-301. PubMed ID: 31106304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning of Static and Dynamic Brain Functional Networks for Early MCI Detection.
    Kam TE; Zhang H; Jiao Z; Shen D
    IEEE Trans Med Imaging; 2020 Feb; 39(2):478-487. PubMed ID: 31329111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer's disease.
    Khazaee A; Ebrahimzadeh A; Babajani-Feremi A
    Brain Imaging Behav; 2016 Sep; 10(3):799-817. PubMed ID: 26363784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Deep Learning Approach for Automated Diagnosis and Multi-Class Classification of Alzheimer's Disease Stages Using Resting-State fMRI and Residual Neural Networks.
    Ramzan F; Khan MUG; Rehmat A; Iqbal S; Saba T; Rehman A; Mehmood Z
    J Med Syst; 2019 Dec; 44(2):37. PubMed ID: 31853655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer's Disease Diagnosis.
    Liu M; Cheng D; Wang K; Wang Y;
    Neuroinformatics; 2018 Oct; 16(3-4):295-308. PubMed ID: 29572601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process.
    Feng W; Halm-Lutterodt NV; Tang H; Mecum A; Mesregah MK; Ma Y; Li H; Zhang F; Wu Z; Yao E; Guo X
    Int J Neural Syst; 2020 Jun; 30(6):2050032. PubMed ID: 32498641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease.
    Liu M; Li F; Yan H; Wang K; Ma Y; ; Shen L; Xu M
    Neuroimage; 2020 Mar; 208():116459. PubMed ID: 31837471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations.
    Wee CY; Liu C; Lee A; Poh JS; Ji H; Qiu A;
    Neuroimage Clin; 2019; 23():101929. PubMed ID: 31491832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning based mild cognitive impairment diagnosis using structure MR images.
    Jiang J; Kang L; Huang J; Zhang T
    Neurosci Lett; 2020 Jun; 730():134971. PubMed ID: 32380147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A survey on applications and analysis methods of functional magnetic resonance imaging for Alzheimer's disease.
    Forouzannezhad P; Abbaspour A; Fang C; Cabrerizo M; Loewenstein D; Duara R; Adjouadi M
    J Neurosci Methods; 2019 Apr; 317():121-140. PubMed ID: 30593787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hippocampal shape and asymmetry analysis by cascaded convolutional neural networks for Alzheimer's disease diagnosis.
    Li A; Li F; Elahifasaee F; Liu M; Zhang L;
    Brain Imaging Behav; 2021 Oct; 15(5):2330-2339. PubMed ID: 33398778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. State-space model with deep learning for functional dynamics estimation in resting-state fMRI.
    Suk HI; Wee CY; Lee SW; Shen D
    Neuroimage; 2016 Apr; 129():292-307. PubMed ID: 26774612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gaussian Discriminant Analysis for Optimal Delineation of Mild Cognitive Impairment in Alzheimer's Disease.
    Fang C; Li C; Cabrerizo M; Barreto A; Andrian J; Rishe N; Loewenstein D; Duara R; Adjouadi M
    Int J Neural Syst; 2018 Oct; 28(8):1850017. PubMed ID: 29793369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting conversion from MCI to AD by integrating rs-fMRI and structural MRI.
    Hojjati SH; Ebrahimzadeh A; Khazaee A; Babajani-Feremi A;
    Comput Biol Med; 2018 Nov; 102():30-39. PubMed ID: 30245275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fused Sparse Network Learning for Longitudinal Analysis of Mild Cognitive Impairment.
    Yang P; Zhou F; Ni D; Xu Y; Chen S; Wang T; Lei B
    IEEE Trans Cybern; 2021 Jan; 51(1):233-246. PubMed ID: 31567112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of patients with MCI and AD from healthy controls using directed graph measures of resting-state fMRI.
    Khazaee A; Ebrahimzadeh A; Babajani-Feremi A;
    Behav Brain Res; 2017 Mar; 322(Pt B):339-350. PubMed ID: 27345822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of early mild cognitive impairment using multi-modal data and graph convolutional networks.
    Liu J; Tan G; Lan W; Wang J
    BMC Bioinformatics; 2020 Nov; 21(Suppl 6):123. PubMed ID: 33203351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting conversion from MCI to AD by integration of rs-fMRI and clinical information using 3D-convolutional neural network.
    Ghafoori S; Shalbaf A
    Int J Comput Assist Radiol Surg; 2022 Jul; 17(7):1245-1255. PubMed ID: 35419720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Assessment of Resting-State for Mild Cognitive Impairment Detection: A Functional Near-Infrared Spectroscopy and Deep Learning Approach.
    Yang D; Hong KS
    J Alzheimers Dis; 2021; 80(2):647-663. PubMed ID: 33579839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of Alzheimer's disease and prediction of mild cognitive impairment-to-Alzheimer's conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm.
    Beheshti I; Demirel H; Matsuda H;
    Comput Biol Med; 2017 Apr; 83():109-119. PubMed ID: 28260614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.