These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31106313)

  • 1. Synergetic light trapping effects in organic solar cells with a patterned semi-transparent electrode.
    Ren H; Ren X; Huang Z; Wu X
    Phys Chem Chem Phys; 2019 Jun; 21(21):11306-11312. PubMed ID: 31106313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverted Ultrathin Organic Solar Cells with a Quasi-Grating Structure for Efficient Carrier Collection and Dip-less Visible Optical Absorption.
    In S; Park N
    Sci Rep; 2016 Feb; 6():21784. PubMed ID: 26902974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimising Non-Patterned MoO
    Chang L; Duan L; Sheng M; Yuan J; Yi H; Zou Y; Uddin A
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32899978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced light scattering and trapping effect of Ag nanowire mesh electrode for high efficient flexible organic solar cell.
    Wang BY; Yoo TH; Lim JW; Sang BI; Lim DS; Choi WK; Hwang DK; Oh YJ
    Small; 2015 Apr; 11(16):1905-11. PubMed ID: 25580907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical and electrical study of organic solar cells with a 2D grating anode.
    Sha WE; Choy WC; Wu Y; Chew WC
    Opt Express; 2012 Jan; 20(3):2572-80. PubMed ID: 22330495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous 1D-Metallic Microfibers Web for Flexible Organic Solar Cells.
    Hong K; Ham J; Kim BJ; Park JY; Lim DC; Lee JY; Lee JL
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27397-404. PubMed ID: 26580701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of geometric lattice design on optical/electrical properties of transparent silver grid for organic solar cells.
    Lim JW; Lee YT; Pandey R; Yoo TH; Sang BI; Ju BK; Hwang DK; Choi WK
    Opt Express; 2014 Nov; 22(22):26891-9. PubMed ID: 25401837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of gold quantum dots/grating-coupled surface plasmons in inverted organic solar cells.
    Kuntamung K; Yaiwong P; Lertvachirapaiboon C; Ishikawa R; Shinbo K; Kato K; Ounnunkad K; Baba A
    R Soc Open Sci; 2021 Mar; 8(3):210022. PubMed ID: 33959372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergetic Transparent Electrode Architecture for Efficient Non-Fullerene Flexible Organic Solar Cells with >12% Efficiency.
    Zhang YX; Fang J; Li W; Shen Y; Chen JD; Li Y; Gu H; Pelivani S; Zhang M; Li Y; Tang JX
    ACS Nano; 2019 Apr; 13(4):4686-4694. PubMed ID: 30892869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ITO with embedded silver grids as transparent conductive electrodes for large area organic solar cells.
    Patil BR; Mirsafaei M; Cielecki PP; Cauduro ALF; Fiutowski J; Rubahn HG; Madsen M
    Nanotechnology; 2017 Oct; 28(40):405303. PubMed ID: 28742058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-trapping design of graphene transparent electrodes for efficient thin-film silicon solar cells.
    Zhao Y; Chen F; Shen Q; Zhang L
    Appl Opt; 2012 Sep; 51(25):6245-51. PubMed ID: 22945173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of flexible organic solar cells with highly conductive and transparent metal-oxide multilayer electrodes based on silver oxide.
    Yun J; Wang W; Bae TS; Park YH; Kang YC; Kim DH; Lee S; Lee GH; Song M; Kang JW
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):9933-41. PubMed ID: 24060352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semi-Transparent Organic Photovoltaic Cells with Dielectric/Metal/Dielectric Top Electrode: Influence of the Metal on Their Performances.
    Cattin L; Louarn G; Morsli M; Bernède JC
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33557016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A wrinkled structure with broadband and omnidirectional light-trapping abilities for improving the performance of organic solar cells with low defect density.
    Liu K; Sun Y; Li Q; Yang C; Azam M; Wang Z; Qu S; Wang Z
    Nanoscale; 2019 Nov; 11(46):22467-22474. PubMed ID: 31746915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and fabrication of a semi-transparent solar cell considering the effect of the layer thickness of MoO
    Çetinkaya Ç; Çokduygulular E; Kınacı B; Güzelçimen F; Özen Y; Efkere Hİ; Candan İ; Emik S; Özçelik S
    Sci Rep; 2021 Jun; 11(1):13079. PubMed ID: 34158559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Aggregated Light-Trapping Nanodots for Highly Efficient Organic Solar Cells.
    Gao H; Yu R; Gong Y; Ma Z; He Z; Dong Y; Xu K; Bai Y; Tan Z
    Small; 2022 Dec; 18(50):e2205128. PubMed ID: 36310144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Inverted Organic Solar Cells Based on a Fullerene Derivative-Modified Transparent Cathode.
    Wang Y; Cong H; Yu B; Zhang Z; Zhan X
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28891990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual Light Trapping and Water-Repellent Effects of a Flexible-Based Inverse Micro-Cone Array for Organic and Perovskite Solar Cells.
    Ginting RT; Jeon EB; Kim JM; Jin WY; Kang JW
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31291-31299. PubMed ID: 30133246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light harvesting improvement of organic solar cells with self-enhanced active layer designs.
    Chen L; Sha WE; Choy WC
    Opt Express; 2012 Mar; 20(7):8175-85. PubMed ID: 22453487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.