These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31106356)

  • 1. Yosshi: a web-server for disulfide engineering by bioinformatic analysis of diverse protein families.
    Suplatov D; Timonina D; Sharapova Y; Švedas V
    Nucleic Acids Res; 2019 Jul; 47(W1):W308-W314. PubMed ID: 31106356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mustguseal and Sister Web-Methods: A Practical Guide to Bioinformatic Analysis of Protein Superfamilies.
    Suplatov D; Sharapova Y; Švedas V
    Methods Mol Biol; 2021; 2231():179-200. PubMed ID: 33289894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The visualCMAT: A web-server to select and interpret correlated mutations/co-evolving residues in protein families.
    Suplatov D; Sharapova Y; Timonina D; Kopylov K; Švedas V
    J Bioinform Comput Biol; 2018 Apr; 16(2):1840005. PubMed ID: 29361894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zebra2: advanced and easy-to-use web-server for bioinformatic analysis of subfamily-specific and conserved positions in diverse protein superfamilies.
    Suplatov D; Sharapova Y; Geraseva E; Švedas V
    Nucleic Acids Res; 2020 Jul; 48(W1):W65-W71. PubMed ID: 32313959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mustguseal: a server for multiple structure-guided sequence alignment of protein families.
    Suplatov DA; Kopylov KE; Popova NN; Voevodin VV; Švedas VK
    Bioinformatics; 2018 May; 34(9):1583-1585. PubMed ID: 29309510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zebra: a web server for bioinformatic analysis of diverse protein families.
    Suplatov D; Kirilin E; Takhaveev V; Svedas V
    J Biomol Struct Dyn; 2014; 32(11):1752-8. PubMed ID: 24028489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pocketZebra: a web-server for automated selection and classification of subfamily-specific binding sites by bioinformatic analysis of diverse protein families.
    Suplatov D; Kirilin E; Arbatsky M; Takhaveev V; Svedas V
    Nucleic Acids Res; 2014 Jul; 42(Web Server issue):W344-9. PubMed ID: 24852248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinformatic analysis of subfamily-specific regions in 3D-structures of homologs to study functional diversity and conformational plasticity in protein superfamilies.
    Timonina D; Sharapova Y; Švedas V; Suplatov D
    Comput Struct Biotechnol J; 2021; 19():1302-1311. PubMed ID: 33738079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disulfide by Design 2.0: a web-based tool for disulfide engineering in proteins.
    Craig DB; Dombkowski AA
    BMC Bioinformatics; 2013 Dec; 14():346. PubMed ID: 24289175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel database of disulfide patterns and its application to the discovery of distantly related homologs.
    van Vlijmen HW; Gupta A; Narasimhan LS; Singh J
    J Mol Biol; 2004 Jan; 335(4):1083-92. PubMed ID: 14698301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PROMALS web server for accurate multiple protein sequence alignments.
    Pei J; Kim BH; Tang M; Grishin NV
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W649-52. PubMed ID: 17452345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Native and modeled disulfide bonds in proteins: knowledge-based approaches toward structure prediction of disulfide-rich polypeptides.
    Thangudu RR; Vinayagam A; Pugalenthi G; Manonmani A; Offmann B; Sowdhamini R
    Proteins; 2005 Mar; 58(4):866-79. PubMed ID: 15645448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting disulfide bond connectivity in proteins by correlated mutations analysis.
    Rubinstein R; Fiser A
    Bioinformatics; 2008 Feb; 24(4):498-504. PubMed ID: 18203772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure.
    Song J; Yuan Z; Tan H; Huber T; Burrage K
    Bioinformatics; 2007 Dec; 23(23):3147-54. PubMed ID: 17942444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational characterization of disulfide bonds: a tool for protein classification.
    Marques JR; da Fonseca RR; Drury B; Melo A
    J Theor Biol; 2010 Dec; 267(3):388-95. PubMed ID: 20851707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinformatic analysis of protein families for identification of variable amino acid residues responsible for functional diversity.
    Suplatov D; Shalaeva D; Kirilin E; Arzhanik V; Švedas V
    J Biomol Struct Dyn; 2014; 32(1):75-87. PubMed ID: 23384165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The MS2DB ++ webserver: disulfide bond determination through evidence combination.
    Murad W; Singh R
    IEEE Trans Nanobioscience; 2013 Dec; 12(4):340-2. PubMed ID: 24425101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conservation of amino acids into multiple alignments involved in pairwise interactions in three-dimensional protein structures.
    Errami M; Geourjon C; Deléage G
    J Bioinform Comput Biol; 2003 Oct; 1(3):505-520. PubMed ID: 15307241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. mulPBA: an efficient multiple protein structure alignment method based on a structural alphabet.
    Léonard S; Joseph AP; Srinivasan N; Gelly JC; de Brevern AG
    J Biomol Struct Dyn; 2014 Apr; 32(4):661-8. PubMed ID: 23659291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The RNAz web server: prediction of thermodynamically stable and evolutionarily conserved RNA structures.
    Gruber AR; Neuböck R; Hofacker IL; Washietl S
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W335-8. PubMed ID: 17452347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.