These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31106422)

  • 1. Iron and the heart: A paradigm shift from systemic to cardiomyocyte abnormalities.
    Paterek A; Mackiewicz U; Mączewski M
    J Cell Physiol; 2019 Dec; 234(12):21613-21629. PubMed ID: 31106422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron regulatory proteins and their role in controlling iron metabolism.
    Kühn LC
    Metallomics; 2015 Feb; 7(2):232-43. PubMed ID: 25306858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular Iron Metabolism and Regulation.
    Gao G; Li J; Zhang Y; Chang YZ
    Adv Exp Med Biol; 2019; 1173():21-32. PubMed ID: 31456203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ferric iron uptake into cardiomyocytes of β-thalassemic mice is not through calcium channels.
    Kumfu S; Chattipakorn S; Fucharoen S; Chattipakorn N
    Drug Chem Toxicol; 2013 Jul; 36(3):329-34. PubMed ID: 23050671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron overload and apoptosis of HL-1 cardiomyocytes: effects of calcium channel blockade.
    Chen MP; Cabantchik ZI; Chan S; Chan GC; Cheung YF
    PLoS One; 2014; 9(11):e112915. PubMed ID: 25390893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiac ferroportin regulates cellular iron homeostasis and is important for cardiac function.
    Lakhal-Littleton S; Wolna M; Carr CA; Miller JJ; Christian HC; Ball V; Santos A; Diaz R; Biggs D; Stillion R; Holdship P; Larner F; Tyler DJ; Clarke K; Davies B; Robbins PA
    Proc Natl Acad Sci U S A; 2015 Mar; 112(10):3164-9. PubMed ID: 25713362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron-regulatory proteins secure iron availability in cardiomyocytes to prevent heart failure.
    Haddad S; Wang Y; Galy B; Korf-Klingebiel M; Hirsch V; Baru AM; Rostami F; Reboll MR; Heineke J; Flögel U; Groos S; Renner A; Toischer K; Zimmermann F; Engeli S; Jordan J; Bauersachs J; Hentze MW; Wollert KC; Kempf T
    Eur Heart J; 2017 Feb; 38(5):362-372. PubMed ID: 27545647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Keeping heart homeostasis in check through the balance of iron metabolism.
    Vela D
    Acta Physiol (Oxf); 2020 Jan; 228(1):e13324. PubMed ID: 31162883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of cardiac iron homeostasis and their importance to heart function.
    Lakhal-Littleton S
    Free Radic Biol Med; 2019 Mar; 133():234-237. PubMed ID: 30107217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. T-type calcium channel blockade improves survival and cardiovascular function in thalassemic mice.
    Kumfu S; Chattipakorn S; Chinda K; Fucharoen S; Chattipakorn N
    Eur J Haematol; 2012 Jun; 88(6):535-48. PubMed ID: 22404220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiomyopathy associated with iron overload: how does iron enter myocytes and what are the implications for pharmacological therapy?
    Wijarnpreecha K; Kumfu S; Chattipakorn SC; Chattipakorn N
    Hemoglobin; 2015; 39(1):9-17. PubMed ID: 25572185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron-responsive miR-485-3p regulates cellular iron homeostasis by targeting ferroportin.
    Sangokoya C; Doss JF; Chi JT
    PLoS Genet; 2013 Apr; 9(4):e1003408. PubMed ID: 23593016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-type-specific insights into iron regulatory processes.
    Mleczko-Sanecka K; Silvestri L
    Am J Hematol; 2021 Jan; 96(1):110-127. PubMed ID: 32945012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silencing of lipocalin-2 improves cardiomyocyte viability under iron overload conditions via decreasing mitochondrial dysfunction and apoptosis.
    Kumfu S; Siri-Angkul N; Chattipakorn SC; Chattipakorn N
    J Cell Physiol; 2021 Jul; 236(7):5108-5120. PubMed ID: 33319934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liver iron transport.
    Graham RM; Chua AC; Herbison CE; Olynyk JK; Trinder D
    World J Gastroenterol; 2007 Sep; 13(35):4725-36. PubMed ID: 17729394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The role of iron regulatory proteins (IRPs) in the regulation of systemic iron homeostasis: lessons from studies on IRP1 and IRP2 knock out mice].
    Lipiński P; Starzyński RR
    Postepy Hig Med Dosw (Online); 2006; 60():322-30. PubMed ID: 16819431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiomyocyte hepcidin: From intracellular iron homeostasis to physiological function.
    Lakhal-Littleton S
    Vitam Horm; 2019; 110():189-200. PubMed ID: 30798812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive changes of duodenal iron transport proteins in celiac disease.
    Barisani D; Parafioriti A; Bardella MT; Zoller H; Conte D; Armiraglio E; Trovato C; Koch RO; Weiss G
    Physiol Genomics; 2004 May; 17(3):316-25. PubMed ID: 15054143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of iron overload condition on liver toxicity and hepcidin/ferroportin expression in thalassemic mice.
    Kumfu S; Chattipakorn SC; Fucharoen S; Chattipakorn N
    Life Sci; 2016 Apr; 150():15-23. PubMed ID: 26921633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of alpha-lipoic acid on expression of iron transport and storage proteins in BV-2 microglia cells.
    Chen P; Li FM; Zhou YF; Qian C; Li J; Jiang LR; Qian ZM
    Pharmacol Rep; 2017 Feb; 69(1):1-5. PubMed ID: 27755990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.