These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31106790)

  • 1. Stiffness tomography of eukaryotic intracellular compartments by atomic force microscopy.
    Janel S; Popoff M; Barois N; Werkmeister E; Divoux S; Perez F; Lafont F
    Nanoscale; 2019 May; 11(21):10320-10328. PubMed ID: 31106790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subsurface Imaging of Cell Organelles by Force Microscopy.
    Guerrero CR; Garcia PD; Garcia R
    ACS Nano; 2019 Aug; 13(8):9629-9637. PubMed ID: 31356042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite Element Modelling of Single Cell Based on Atomic Force Microscope Indentation Method.
    Wang L; Wang L; Xu L; Chen W
    Comput Math Methods Med; 2019; 2019():7895061. PubMed ID: 31933677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of membrane stiffness and cytoskeletal element density on mechanical stimuli within cells: an analysis of the consequences of ageing in cells.
    Xue F; Lennon AB; McKayed KK; Campbell VA; Prendergast PJ
    Comput Methods Biomech Biomed Engin; 2015; 18(5):468-76. PubMed ID: 23947334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase imaging by atomic force microscopy: analysis of living homoiothermic vertebrate cells.
    Nagao E; Dvorak JA
    Biophys J; 1999 Jun; 76(6):3289-97. PubMed ID: 10354454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CLAFEM: Correlative light atomic force electron microscopy.
    Janel S; Werkmeister E; Bongiovanni A; Lafont F; Barois N
    Methods Cell Biol; 2017; 140():165-185. PubMed ID: 28528632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic force microscopy imaging of living cells: progress, problems and prospects.
    You HX; Yu L
    Methods Cell Sci; 1999; 21(1):1-17. PubMed ID: 10733253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of the unroofing technique for atomic force microscopic imaging of the intra-cellular cytoskeleton under aqueous conditions.
    Usukura J; Yoshimura A; Minakata S; Youn D; Ahn J; Cho SJ
    J Electron Microsc (Tokyo); 2012; 61(5):321-6. PubMed ID: 22872282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry.
    Bausch AR; Ziemann F; Boulbitch AA; Jacobson K; Sackmann E
    Biophys J; 1998 Oct; 75(4):2038-49. PubMed ID: 9746546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlative Super-Resolution Fluorescence Imaging and Atomic Force Microscopy for the Characterization of Biological Samples.
    Bondia P; Casado S; Flors C
    Methods Mol Biol; 2017; 1663():105-113. PubMed ID: 28924662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined atomic force microscopy (AFM) and traction force microscopy (TFM) reveals a correlation between viscoelastic material properties and contractile prestress of living cells.
    Schierbaum N; Rheinlaender J; Schäffer TE
    Soft Matter; 2019 Feb; 15(8):1721-1729. PubMed ID: 30657157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy.
    Hoh JH; Schoenenberger CA
    J Cell Sci; 1994 May; 107 ( Pt 5)():1105-14. PubMed ID: 7929621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic force microscopy study revealed velocity-dependence and nonlinearity of nanoscale poroelasticity of eukaryotic cells.
    Mollaeian K; Liu Y; Bi S; Ren J
    J Mech Behav Biomed Mater; 2018 Feb; 78():65-73. PubMed ID: 29136577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic force microscopy: probing the spatial organization, interactions and elasticity of microbial cell envelopes at molecular resolution.
    Scheuring S; Dufrêne YF
    Mol Microbiol; 2010 Mar; 75(6):1327-36. PubMed ID: 20132452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analyses of topography and elasticity of living and fixed astrocytes.
    Yamane Y; Shiga H; Haga H; Kawabata K; Abe K; Ito E
    J Electron Microsc (Tokyo); 2000; 49(3):463-71. PubMed ID: 11108036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell elasticity with altered cytoskeletal architectures across multiple cell types.
    Grady ME; Composto RJ; Eckmann DM
    J Mech Behav Biomed Mater; 2016 Aug; 61():197-207. PubMed ID: 26874250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatoid bodies in somatic cells of the planarian: observations on their behavior during mitosis.
    Coward SJ
    Anat Rec; 1974 Nov; 180(3):533-45. PubMed ID: 4371241
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of streptolysin O on the microelasticity of human platelets analyzed by atomic force microscopy.
    Walch M; Ziegler U; Groscurth P
    Ultramicroscopy; 2000 Feb; 82(1-4):259-67. PubMed ID: 10741678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of the cell-surface roughness and viscoelasticity for breast cancer cells discrimination using atomic force microscopy.
    Wang Y; Xu C; Jiang N; Zheng L; Zeng J; Qiu C; Yang H; Xie S
    Scanning; 2016 Nov; 38(6):558-563. PubMed ID: 26750438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist.
    Smith BA; Tolloczko B; Martin JG; Grütter P
    Biophys J; 2005 Apr; 88(4):2994-3007. PubMed ID: 15665124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.