These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 31107098)

  • 21. Dual-periodically poled lithium niobate microcavities supporting multiple coupled parametric processes.
    Zhang L; Hao Z; Luo Q; Gao A; Zhang R; Yang C; Gao F; Bo F; Zhang G; Xu J
    Opt Lett; 2020 Jun; 45(12):3353-3356. PubMed ID: 32538982
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly efficient second-harmonic and sum-frequency generation of nanosecond pulses in a cascaded erbium-doped fiber:periodically poled lithium niobate source.
    Taverner D; Britton P; Smith PG; Richardson DJ; Ross GW; Hanna DC
    Opt Lett; 1998 Feb; 23(3):162-4. PubMed ID: 18084446
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator.
    Fürst JU; Strekalov DV; Elser D; Lassen M; Andersen UL; Marquardt C; Leuchs G
    Phys Rev Lett; 2010 Apr; 104(15):153901. PubMed ID: 20481990
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Counter-propagating photon pair generation in a nonlinear waveguide.
    Luo KH; Ansari V; Massaro M; Santandrea M; Eigner C; Ricken R; Herrmann H; Silberhorn C
    Opt Express; 2020 Feb; 28(3):3215-3225. PubMed ID: 32121994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-referenced temperature sensing with a lithium niobate microdisk resonator.
    Luo R; Jiang H; Liang H; Chen Y; Lin Q
    Opt Lett; 2017 Apr; 42(7):1281-1284. PubMed ID: 28362749
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strongly Enhanced Second Harmonic Generation in a Thin Film Lithium Niobate Heterostructure Cavity.
    Yuan S; Wu Y; Dang Z; Zeng C; Qi X; Guo G; Ren X; Xia J
    Phys Rev Lett; 2021 Oct; 127(15):153901. PubMed ID: 34678011
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation.
    Wang J; Bo F; Wan S; Li W; Gao F; Li J; Zhang G; Xu J
    Opt Express; 2015 Sep; 23(18):23072-8. PubMed ID: 26368411
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental demonstration of super quasi-phase matching in nonlinear photonic crystal.
    Ren ML; Ma DL; Li ZY
    Opt Lett; 2011 Sep; 36(18):3696-8. PubMed ID: 21931436
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals.
    Wei D; Wang C; Xu X; Wang H; Hu Y; Chen P; Li J; Zhu Y; Xin C; Hu X; Zhang Y; Wu D; Chu J; Zhu S; Xiao M
    Nat Commun; 2019 Sep; 10(1):4193. PubMed ID: 31519901
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultra-broadband optical parametric generation and simultaneous RGB generation in periodically poled lithium niobate.
    Lim HH; Prakash O; Kim BJ; Pandiyan K; Cha M; Rhee BK
    Opt Express; 2007 Dec; 15(26):18294-9. PubMed ID: 19551127
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficiency pedestal in quasi-phase-matching devices with random duty-cycle errors.
    Pelc JS; Phillips CR; Chang D; Langrock C; Fejer MM
    Opt Lett; 2011 Mar; 36(6):864-6. PubMed ID: 21403710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cascaded DFG via quasi-phase matching with Cherenkov-type PPLN for highly efficient terahertz generation.
    Huang J; Rao Z; Xie F
    Opt Express; 2019 Jun; 27(12):17199-17208. PubMed ID: 31252933
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation.
    Skauli T; Vodopyanov KL; Pinguet TJ; Schober A; Levi O; Eyres LA; Fejer MM; Harris JS; Gerard B; Becouarn L; Lallier E; Arisholm G
    Opt Lett; 2002 Apr; 27(8):628-30. PubMed ID: 18007884
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of a hybrid chalcogenide-glass on lithium-niobate waveguide structure for high-performance cascaded third- and second-order optical nonlinearities.
    Gonzalez GFC; Malinowski M; Honardoost A; Fathpour S
    Appl Opt; 2019 May; 58(13):D1-D6. PubMed ID: 31044813
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient second harmonic generation by harnessing bound states in the continuum in semi-nonlinear etchless lithium niobate waveguides.
    Li X; Ma J; Liu S; Huang P; Chen B; Wei D; Liu J
    Light Sci Appl; 2022 Nov; 11(1):317. PubMed ID: 36316306
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fano Resonance on Nanostructured Lithium Niobate for Highly Efficient and Tunable Second Harmonic Generation.
    Huang Z; Lu H; Xiong H; Li Y; Chen H; Qiu W; Guan H; Dong J; Zhu W; Yu J; Luo Y; Zhang J; Chen Z
    Nanomaterials (Basel); 2019 Jan; 9(1):. PubMed ID: 30621302
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermo-optic effects in on-chip lithium niobate microdisk resonators.
    Wang J; Zhu B; Hao Z; Bo F; Wang X; Gao F; Li Y; Zhang G; Xu J
    Opt Express; 2016 Sep; 24(19):21869-79. PubMed ID: 27661922
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly tunable birefringent phase-matched second-harmonic generation in an angle-cut lithium niobate-on-insulator ridge waveguide.
    Lu C; Zhang Y; Qiu J; Tang Y; Ding T; Liu S; Zheng Y; Chen X
    Opt Lett; 2022 Mar; 47(5):1081-1084. PubMed ID: 35230295
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of MgO doping of periodically poled lithium niobate on second-harmonic generation of femtosecond laser pulses.
    Zhang J; Chen Y; Lu F; Lu W; Dang W; Chen X; Xia Y
    Appl Opt; 2007 Nov; 46(32):7792-6. PubMed ID: 17994126
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phase correction in double-pass quasi-phase-matched second-harmonic generation with a wedged crystal.
    Imeshev G; Proctor M; Fejer MM
    Opt Lett; 1998 Feb; 23(3):165-7. PubMed ID: 18084447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.