These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 31107154)

  • 41. Improving CRISPR-Cas9 Genome Editing Efficiency by Fusion with Chromatin-Modulating Peptides.
    Ding X; Seebeck T; Feng Y; Jiang Y; Davis GD; Chen F
    CRISPR J; 2019 Feb; 2():51-63. PubMed ID: 31021236
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila.
    Xu J; Ren X; Sun J; Wang X; Qiao HH; Xu BW; Liu LP; Ni JQ
    J Genet Genomics; 2015 Apr; 42(4):141-9. PubMed ID: 25953352
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/CRISPR-Associated Endonuclease Cas9-Mediated Homology-Independent Integration for Generating Quality Control Materials for Clinical Molecular Genetic Testing.
    Lin G; Zhang K; Peng R; Han Y; Xie J; Li J
    J Mol Diagn; 2018 May; 20(3):373-380. PubMed ID: 29680088
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CRISPR-Cas9 system: A new-fangled dawn in gene editing.
    Gupta D; Bhattacharjee O; Mandal D; Sen MK; Dey D; Dasgupta A; Kazi TA; Gupta R; Sinharoy S; Acharya K; Chattopadhyay D; Ravichandiran V; Roy S; Ghosh D
    Life Sci; 2019 Sep; 232():116636. PubMed ID: 31295471
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Therapeutic gene editing in haematological disorders with CRISPR/Cas9.
    Jensen TI; Axelgaard E; Bak RO
    Br J Haematol; 2019 Jun; 185(5):821-835. PubMed ID: 30864164
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biased and Unbiased Methods for the Detection of Off-Target Cleavage by CRISPR/Cas9: An Overview.
    Martin F; Sánchez-Hernández S; Gutiérrez-Guerrero A; Pinedo-Gomez J; Benabdellah K
    Int J Mol Sci; 2016 Sep; 17(9):. PubMed ID: 27618019
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cutting Edge Genetics: CRISPR/Cas9 Editing of Plant Genomes.
    Soyars CL; Peterson BA; Burr CA; Nimchuk ZL
    Plant Cell Physiol; 2018 Aug; 59(8):1608-1620. PubMed ID: 29912402
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Methods for In Vivo CRISPR/Cas Editing of the Adult Murine Retina.
    Hung SS; Li F; Wang JH; King AE; Bui BV; Liu GS; Hewitt AW
    Methods Mol Biol; 2018; 1715():113-133. PubMed ID: 29188510
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CRISPR/Cas9 Genome Editing: A Promising Tool for Therapeutic Applications of Induced Pluripotent Stem Cells.
    Zhang Y; Sastre D; Wang F
    Curr Stem Cell Res Ther; 2018; 13(4):243-251. PubMed ID: 29446747
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Broad Application of CRISPR Cas9 in Infectious, Inflammatory and Neurodegenerative Diseases.
    Pahan K
    J Neuroimmune Pharmacol; 2019 Dec; 14(4):534-536. PubMed ID: 31782056
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comprehensive UHPLC- and CE-based methods for engineered Cas9 characterization.
    Camperi J; Console G; Zheng L; Stephens N; Montti M; Roper B; Zheng M; Moshref M; Dagdas Y; Holder P; Stella C
    Talanta; 2023 Jan; 252():123780. PubMed ID: 35988299
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Designing Safer CRISPR/Cas9 Therapeutics for HIV: Defining Factors That Regulate and Technologies Used to Detect Off-Target Editing.
    Sullivan NT; Allen AG; Atkins AJ; Chung CH; Dampier W; Nonnemacher MR; Wigdahl B
    Front Microbiol; 2020; 11():1872. PubMed ID: 32903440
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Off-target effects in CRISPR/Cas9 gene editing.
    Guo C; Ma X; Gao F; Guo Y
    Front Bioeng Biotechnol; 2023; 11():1143157. PubMed ID: 36970624
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Benchmarking and integrating genome-wide CRISPR off-target detection and prediction.
    Yan J; Xue D; Chuai G; Gao Y; Zhang G; Liu Q
    Nucleic Acids Res; 2020 Nov; 48(20):11370-11379. PubMed ID: 33137817
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Data imbalance in CRISPR off-target prediction.
    Gao Y; Chuai G; Yu W; Qu S; Liu Q
    Brief Bioinform; 2020 Jul; 21(4):1448-1454. PubMed ID: 31267129
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In silico analysis of potential off-target sites to gene editing for Mucopolysaccharidosis type I using the CRISPR/Cas9 system: Implications for population-specific treatments.
    Carneiro P; de Freitas MV; Matte U
    PLoS One; 2022; 17(1):e0262299. PubMed ID: 35073349
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Off-target Cas9 crystallized.
    Thomas T
    Nat Struct Mol Biol; 2022 Dec; 29(12):1147. PubMed ID: 36482251
    [No Abstract]   [Full Text] [Related]  

  • 58. Target-seq: single workflow for detection of genome integration site, DNA translocation and off-target events.
    Tang PZ; Ding B; Reyes C; Papp D; Potter J
    Biotechniques; 2023 May; 74(5):211-224. PubMed ID: 37161298
    [TBL] [Abstract][Full Text] [Related]  

  • 59. crisprSQL: a novel database platform for CRISPR/Cas off-target cleavage assays.
    Störtz F; Minary P
    Nucleic Acids Res; 2021 Jan; 49(D1):D855-D861. PubMed ID: 33084893
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A systematic method for solving data imbalance in CRISPR off-target prediction tasks.
    Guan Z; Jiang Z
    Comput Biol Med; 2024 Aug; 178():108781. PubMed ID: 38936075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.