Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 31107463)

  • 1. Preparation of Neutrally-charged, pH-responsive Polymeric Nanoparticles for Cytosolic siRNA Delivery.
    Hendershot J; Smith AE; Werfel TA
    J Vis Exp; 2019 May; (147):. PubMed ID: 31107463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a novel endosomolytic diblock copolymer for siRNA delivery.
    Convertine AJ; Benoit DS; Duvall CL; Hoffman AS; Stayton PS
    J Control Release; 2009 Feb; 133(3):221-9. PubMed ID: 18973780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor Microenvironment-Responsive Multistaged Nanoplatform for Systemic RNAi and Cancer Therapy.
    Xu X; Saw PE; Tao W; Li Y; Ji X; Yu M; Mahmoudi M; Rasmussen J; Ayyash D; Zhou Y; Farokhzad OC; Shi J
    Nano Lett; 2017 Jul; 17(7):4427-4435. PubMed ID: 28636389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The efficiency of cytosolic drug delivery using pH-responsive endosomolytic polymers does not correlate with activation of the NLRP3 inflammasome.
    Baljon JJ; Dandy A; Wang-Bishop L; Wehbe M; Jacobson ME; Wilson JT
    Biomater Sci; 2019 Apr; 7(5):1888-1897. PubMed ID: 30843539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size- and Surface- Dual Engineered Small Polyplexes for Efficiently Targeting Delivery of siRNA.
    Liu S; Deng S; Li X; Cheng D
    Molecules; 2021 May; 26(11):. PubMed ID: 34072265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Polyplex Size on Penetration into Tumor Spheroids.
    Casadidio C; Hartman JEM; Mesquita BS; Haegebaert R; Remaut K; Neumann M; Hak J; Censi R; Di Martino P; Hennink WE; Vermonden T
    Mol Pharm; 2023 Nov; 20(11):5515-5531. PubMed ID: 37811785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning Composition of Polymer and Porous Silicon Composite Nanoparticles for Early Endosome Escape of Anti-microRNA Peptide Nucleic Acids.
    Kelly IB; Fletcher RB; McBride JR; Weiss SM; Duvall CL
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39602-39611. PubMed ID: 32805967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-mediated activation of siRNA Release in diblock copolymer assemblies for controlled gene silencing.
    Foster AA; Greco CT; Green MD; Epps TH; Sullivan MO
    Adv Healthc Mater; 2015 Apr; 4(5):760-70. PubMed ID: 25530259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gal8 Visualization of Endosome Disruption Predicts Carrier-Mediated Biologic Drug Intracellular Bioavailability.
    Kilchrist KV; Dimobi SC; Jackson MA; Evans BC; Werfel TA; Dailing EA; Bedingfield SK; Kelly IB; Duvall CL
    ACS Nano; 2019 Feb; 13(2):1136-1152. PubMed ID: 30629431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering endosomolytic nanocarriers of diverse morphologies using confined impingement jet mixing.
    Pagendarm HM; Stone PT; Kimmel BR; Baljon JJ; Aziz MH; Pastora LE; Hubert L; Roth EW; Almunif S; Scott EA; Wilson JT
    Nanoscale; 2023 Oct; 15(39):16016-16029. PubMed ID: 37753868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting Gene Silencing Through the Spatiotemporal Control of siRNA Release from Photo-responsive Polymeric Nanocarriers.
    Greco CT; Epps TH; Sullivan MO
    J Vis Exp; 2017 Jul; (125):. PubMed ID: 28784979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triblock copolymer-encapsulated nanoparticles with outstanding colloidal stability for siRNA delivery.
    Qian J; Gao X
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):2845-52. PubMed ID: 23320382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutral polymeric micelles for RNA delivery.
    Lundy BB; Convertine A; Miteva M; Stayton PS
    Bioconjug Chem; 2013 Mar; 24(3):398-407. PubMed ID: 23360541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technologies for investigating the physiological barriers to efficient lipid nanoparticle-siRNA delivery.
    Shi B; Abrams M
    J Histochem Cytochem; 2013 Jun; 61(6):407-20. PubMed ID: 23504369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Octa-functional PLGA nanoparticles for targeted and efficient siRNA delivery to tumors.
    Zhou J; Patel TR; Fu M; Bertram JP; Saltzman WM
    Biomaterials; 2012 Jan; 33(2):583-91. PubMed ID: 22014944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient intracellular siRNA delivery by ethyleneimine-modified amphiphilic macromolecules.
    Sparks SM; Waite CL; Harmon AM; Nusblat LM; Roth CM; Uhrich KE
    Macromol Biosci; 2011 Sep; 11(9):1192-200. PubMed ID: 21793212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport and delivery of interferon-α through epithelial tight junctions via pH-responsive poly(methacrylic acid-grafted-ethylene glycol) nanoparticles.
    Caldorera-Moore M; Vela Ramirez JE; Peppas NA
    J Drug Target; 2019; 27(5-6):582-589. PubMed ID: 30457357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Core polymer optimization of ternary siRNA nanoparticles enhances in vivo safety, pharmacokinetics, and tumor gene silencing.
    Patel SS; Hoogenboezem EN; Yu F; DeJulius CR; Fletcher RB; Sorets AG; Cherry FK; Lo JH; Bezold MG; Francini N; d'Arcy R; Brasuell JE; Cook RS; Duvall CL
    Biomaterials; 2023 Jun; 297():122098. PubMed ID: 37031547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient tuning of siRNA dose response by combining mixed polymer nanocarriers with simple kinetic modeling.
    Greco CT; Muir VG; Epps TH; Sullivan MO
    Acta Biomater; 2017 Mar; 50():407-416. PubMed ID: 28063990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress and perspective of inorganic nanoparticle-based siRNA delivery systems.
    Jiang Y; Huo S; Hardie J; Liang XJ; Rotello VM
    Expert Opin Drug Deliv; 2016; 13(4):547-59. PubMed ID: 26735861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.