BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 31107474)

  • 1. Large-area superelastic graphene aerogels based on a room-temperature reduction self-assembly strategy for sensing and particulate matter (PM
    Yan S; Zhang G; Li F; Zhang L; Wang S; Zhao H; Ge Q; Li H
    Nanoscale; 2019 May; 11(21):10372-10380. PubMed ID: 31107474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particulate Matter Capturing via Naturally Dried ZIF-8/Graphene Aerogels under Harsh Conditions.
    Mao J; Tang Y; Wang Y; Huang J; Dong X; Chen Z; Lai Y
    iScience; 2019 Jun; 16():133-144. PubMed ID: 31170625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superelastic, Macroporous Polystyrene-Mediated Graphene Aerogels for Active Pressure Sensing.
    Zhang P; Lv L; Cheng Z; Liang Y; Zhou Q; Zhao Y; Qu L
    Chem Asian J; 2016 Apr; 11(7):1071-5. PubMed ID: 26852896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultralight, Superelastic, and Fatigue-Resistant Graphene Aerogel Templated by Graphene Oxide Liquid Crystal Stabilized Air Bubbles.
    Zhang X; Zhang T; Wang Z; Ren Z; Yan S; Duan Y; Zhang J
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1303-1310. PubMed ID: 30525407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions.
    Si Y; Fu Q; Wang X; Zhu J; Yu J; Sun G; Ding B
    ACS Nano; 2015 Apr; 9(4):3791-9. PubMed ID: 25853279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superelastic Ti
    Jiang D; Zhang J; Qin S; Wang Z; Usman KAS; Hegh D; Liu J; Lei W; Razal JM
    ACS Nano; 2021 Mar; 15(3):5000-5010. PubMed ID: 33635074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruction of Inherent Graphene Oxide Liquid Crystals for Large-Scale Fabrication of Structure-Intact Graphene Aerogel Bulk toward Practical Applications.
    Yang H; Li Z; Lu B; Gao J; Jin X; Sun G; Zhang G; Zhang P; Qu L
    ACS Nano; 2018 Nov; 12(11):11407-11416. PubMed ID: 30383351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superelastic Multifunctional Aminosilane-Crosslinked Graphene Aerogels for High Thermal Insulation, Three-Component Separation, and Strain/Pressure-Sensing Arrays.
    Zu G; Kanamori K; Nakanishi K; Lu X; Yu K; Huang J; Sugimura H
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43533-43542. PubMed ID: 31674184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freeze-drying induced self-assembly approach for scalable constructing MoS
    Wang S; Wang R; Zhao Q; Ren L; Wen J; Chang J; Fang X; Hu N; Xu C
    J Colloid Interface Sci; 2019 May; 544():37-45. PubMed ID: 30825799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scalable Fabrication of Ti
    Jiang D; Zhang J; Qin S; Hegh D; Usman KAS; Wang J; Lei W; Liu J; Razal JM
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51333-51342. PubMed ID: 34696589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wet-Spun Superelastic Graphene Aerogel Millispheres with Group Effect.
    Zhao X; Yao W; Gao W; Chen H; Gao C
    Adv Mater; 2017 Sep; 29(35):. PubMed ID: 28714230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superelastic Pseudocapacitors from Freestanding MnO
    Zhao Y; Li MP; Liu S; Islam MF
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23810-23819. PubMed ID: 28636819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled porous structures of graphene aerogels and their effect on supercapacitor performance.
    Jung SM; Mafra DL; Lin CT; Jung HY; Kong J
    Nanoscale; 2015 Mar; 7(10):4386-93. PubMed ID: 25682978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust Vacuum-/Air-Dried Graphene Aerogels and Fast Recoverable Shape-Memory Hybrid Foams.
    Li C; Qiu L; Zhang B; Li D; Liu CY
    Adv Mater; 2016 Feb; 28(7):1510-6. PubMed ID: 26643876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retarding Ostwald Ripening to Directly Cast 3D Porous Graphene Oxide Bulks at Open Ambient Conditions.
    Yang H; Jin X; Sun G; Li Z; Gao J; Lu B; Shao C; Zhang X; Dai C; Zhang Z; Chen N; Lupi S; Marcelli A; Qu L
    ACS Nano; 2020 May; 14(5):6249-6257. PubMed ID: 32356971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macroscopic-Scale Preparation of Aramid Nanofiber Aerogel by Modified Freezing-Drying Method.
    Xie C; Liu S; Zhang Q; Ma H; Yang S; Guo ZX; Qiu T; Tuo X
    ACS Nano; 2021 Jun; 15(6):10000-10009. PubMed ID: 34086437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategy of Constructing Light-Weight and Highly Compressible Graphene-Based Aerogels with an Ordered Unique Configuration for Wearable Piezoresistive Sensors.
    He X; Liu Q; Zhong W; Chen J; Sun D; Jiang H; Liu K; Wang W; Wang Y; Lu Z; Li M; Liu X; Wang X; Sun G; Wang D
    ACS Appl Mater Interfaces; 2019 May; 11(21):19350-19362. PubMed ID: 31056902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ Synthesis of Biomimetic Silica Nanofibrous Aerogels with Temperature-Invariant Superelasticity over One Million Compressions.
    Wang F; Dou L; Dai J; Li Y; Huang L; Si Y; Yu J; Ding B
    Angew Chem Int Ed Engl; 2020 May; 59(21):8285-8292. PubMed ID: 32043757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene aerogels via hydrothermal gelation of graphene oxide colloids: Fine-tuning of its porous and chemical properties and catalytic applications.
    Garcia-Bordejé E; Benito AM; Maser WK
    Adv Colloid Interface Sci; 2021 Jun; 292():102420. PubMed ID: 33934004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical modification of graphene aerogels for electrochemical capacitor applications.
    Hong JY; Wie JJ; Xu Y; Park HS
    Phys Chem Chem Phys; 2015 Dec; 17(46):30946-62. PubMed ID: 26536234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.