These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 31107655)

  • 1. A Mechatronic System for Studying Energy Optimization During Walking.
    Simha SN; Wong JD; Selinger JC; Donelan JM
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1416-1425. PubMed ID: 31107655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing the gradient of energetic cost does not initiate adaptation in human walking.
    Simha SN; Wong JD; Selinger JC; Abram SJ; Donelan JM
    J Neurophysiol; 2021 Aug; 126(2):440-450. PubMed ID: 34161744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy optimization is a major objective in the real-time control of step width in human walking.
    Abram SJ; Selinger JC; Donelan JM
    J Biomech; 2019 Jun; 91():85-91. PubMed ID: 31151794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is natural variability in gait sufficient to initiate spontaneous energy optimization in human walking?
    Wong JD; Selinger JC; Donelan JM
    J Neurophysiol; 2019 May; 121(5):1848-1855. PubMed ID: 30864867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compliant walking appears metabolically advantageous at extreme step lengths.
    Kim J; Bertram JEA
    Gait Posture; 2018 Jul; 64():84-89. PubMed ID: 29883939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How humans initiate energy optimization and converge on their optimal gaits.
    Selinger JC; Wong JD; Simha SN; Donelan JM
    J Exp Biol; 2019 Oct; 222(Pt 19):. PubMed ID: 31488623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General variability leads to specific adaptation toward optimal movement policies.
    Abram SJ; Poggensee KL; Sánchez N; Simha SN; Finley JM; Collins SH; Donelan JM
    Curr Biol; 2022 May; 32(10):2222-2232.e5. PubMed ID: 35537453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of blood oxygen and carbon dioxide sensing to the energetic optimization of human walking.
    Wong JD; O'Connor SM; Selinger JC; Donelan JM
    J Neurophysiol; 2017 Aug; 118(2):1425-1433. PubMed ID: 28637813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model of human walking energetics with an elastically-suspended load.
    Ackerman J; Seipel J
    J Biomech; 2014 Jun; 47(8):1922-7. PubMed ID: 24709566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Domestic cat walking parallels human constrained optimization: optimization strategies and the comparison of normal and sensory deficient individuals.
    Bertram JE; Gutmann A; Randev J; Hulliger M
    Hum Mov Sci; 2014 Aug; 36():154-66. PubMed ID: 24974156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constrained optimization in human walking: cost minimization and gait plasticity.
    Bertram JE
    J Exp Biol; 2005 Mar; 208(Pt 6):979-91. PubMed ID: 15767300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parametric Modeling of Human Gradient Walking for Predicting Minimum Energy Expenditure.
    Saborit G; Casinos A
    Comput Math Methods Med; 2015; 2015():407156. PubMed ID: 26417377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bilevel Optimization for Cost Function Determination in Dynamic Simulation of Human Gait.
    Nguyen VQ; Johnson RT; Sup FC; Umberger BR
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1426-1435. PubMed ID: 31199264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of muscle energy models for simulating human walking in three dimensions.
    Miller RH
    J Biomech; 2014 Apr; 47(6):1373-81. PubMed ID: 24581797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization characteristics of walking with and without a load on the trunk of the body.
    Falola JM; Delpech N; Brisswalter J
    Percept Mot Skills; 2000 Aug; 91(1):261-72. PubMed ID: 11011897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Humans Can Continuously Optimize Energetic Cost during Walking.
    Selinger JC; O'Connor SM; Wong JD; Donelan JM
    Curr Biol; 2015 Sep; 25(18):2452-6. PubMed ID: 26365256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rising Energetic Cost of Walking Predicts Gait Speed Decline With Aging.
    Schrack JA; Zipunnikov V; Simonsick EM; Studenski S; Ferrucci L
    J Gerontol A Biol Sci Med Sci; 2016 Jul; 71(7):947-53. PubMed ID: 26850913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transmission efficiency of backward walking at different gradients.
    Minetti AE; Ardigò LP
    Pflugers Arch; 2001 Jul; 442(4):542-6. PubMed ID: 11510887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The high cost of swing leg circumduction during human walking.
    Shorter KA; Wu A; Kuo AD
    Gait Posture; 2017 May; 54():265-270. PubMed ID: 28371740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.