These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 31107655)

  • 21. Altering Compliance of a Load Carriage Device in the Medial-Lateral Direction Reduces Peak Forces While Walking.
    Martin JP; Li Q
    Sci Rep; 2018 Sep; 8(1):13775. PubMed ID: 30214050
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Powered hip exoskeletons can reduce the user's hip and ankle muscle activations during walking.
    Lenzi T; Carrozza MC; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):938-48. PubMed ID: 23529105
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy cost and muscular activity required for leg swing during walking.
    Gottschall JS; Kram R
    J Appl Physiol (1985); 2005 Jul; 99(1):23-30. PubMed ID: 16036902
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intersegmental kinematics coordination in unilateral peripheral and central origin: Effect on gait mechanism?
    Wallard L; Boulet S; Cornu O; Dubuc JE; Mahaudens P; Postlethwaite D; Van Cauter M; Detrembleur C
    Gait Posture; 2018 May; 62():124-131. PubMed ID: 29547792
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differentiation between solid-ankle cushioned heel and energy storage and return prosthetic foot based on step-to-step transition cost.
    Wezenberg D; Cutti AG; Bruno A; Houdijk H
    J Rehabil Res Dev; 2014; 51(10):1579-90. PubMed ID: 25860285
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conceptual Design of a Fully Passive Transfemoral Prosthesis to Facilitate Energy-Efficient Gait.
    Unal R; Behrens S; Carloni R; Hekman E; Stramigioli S; Koopman B
    IEEE Trans Neural Syst Rehabil Eng; 2018 Dec; 26(12):2360-2366. PubMed ID: 30418913
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence of Energetic Optimization during Adaptation Differs for Metabolic, Mechanical, and Perceptual Estimates of Energetic Cost.
    Sánchez N; Park S; Finley JM
    Sci Rep; 2017 Aug; 7(1):7682. PubMed ID: 28794494
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interlimb Coordination During Step-to-Step Transition and Gait Performance.
    Sousa AS; Tavares JM
    J Mot Behav; 2015; 47(6):563-74. PubMed ID: 25893693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of pole compliance and step frequency on the biomechanics and economy of pole carrying during human walking.
    Castillo ER; Lieberman GM; McCarty LS; Lieberman DE
    J Appl Physiol (1985); 2014 Sep; 117(5):507-17. PubMed ID: 24994885
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Confidence in the curve: Establishing instantaneous cost mapping techniques using bilateral ankle exoskeletons.
    Koller JR; Gates DH; Ferris DP; Remy CD
    J Appl Physiol (1985); 2017 Feb; 122(2):242-252. PubMed ID: 27856717
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Energy cost and muscular activity required for propulsion during walking.
    Gottschall JS; Kram R
    J Appl Physiol (1985); 2003 May; 94(5):1766-72. PubMed ID: 12506042
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple walking speed-frequency relations are predicted by constrained optimization.
    Bertram JE; Ruina A
    J Theor Biol; 2001 Apr; 209(4):445-53. PubMed ID: 11319893
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Association between energy cost of walking, muscle activation, and biomechanical parameters in older female fallers and non-fallers.
    Marques NR; LaRoche DP; Hallal CZ; Crozara LF; Morcelli MH; Karuka AH; Navega MT; Gonçalves M
    Clin Biomech (Bristol, Avon); 2013 Mar; 28(3):330-6. PubMed ID: 23391513
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inverse dynamic estimates of muscle recruitment and joint contact forces are more realistic when minimizing muscle activity rather than metabolic energy or contact forces.
    Zargham A; Afschrift M; De Schutter J; Jonkers I; De Groote F
    Gait Posture; 2019 Oct; 74():223-230. PubMed ID: 31563823
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of walking in children.
    Jeng SF; Liao HF; Lai JS; Hou JW
    Med Sci Sports Exerc; 1997 Mar; 29(3):370-6. PubMed ID: 9139176
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predictive Simulation of Human Walking Augmented by a Powered Ankle Exoskeleton.
    Nguyen VQ; Umberger BR; Sup FC
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():53-58. PubMed ID: 31374606
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stepping strategies used by post-stroke individuals to maintain margins of stability during walking.
    Hak L; Houdijk H; van der Wurff P; Prins MR; Mert A; Beek PJ; van Dieën JH
    Clin Biomech (Bristol, Avon); 2013; 28(9-10):1041-8. PubMed ID: 24200373
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fast and slow processes underlie the selection of both step frequency and walking speed.
    Pagliara R; Snaterse M; Donelan JM
    J Exp Biol; 2014 Aug; 217(Pt 16):2939-46. PubMed ID: 24902746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Overground vs. treadmill walking on biomechanical energy harvesting: An energetics and EMG study.
    Martin JP; Li Q
    Gait Posture; 2017 Feb; 52():124-128. PubMed ID: 27912153
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Running perturbations reveal general strategies for step frequency selection.
    Snyder KL; Snaterse M; Donelan JM
    J Appl Physiol (1985); 2012 Apr; 112(8):1239-47. PubMed ID: 22241053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.