These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 31107655)

  • 41. Energetics and optimization of human walking and running: the 2000 Raymond Pearl memorial lecture.
    McNeill Alexander R
    Am J Hum Biol; 2002; 14(5):641-8. PubMed ID: 12203818
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking.
    Huang TW; Shorter KA; Adamczyk PG; Kuo AD
    J Exp Biol; 2015 Nov; 218(Pt 22):3541-50. PubMed ID: 26385330
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Joint contact forces can be reduced by improving joint moment symmetry in below-knee amputee gait simulations.
    Koelewijn AD; van den Bogert AJ
    Gait Posture; 2016 Sep; 49():219-225. PubMed ID: 27459416
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neglected losses and key costs: tracking the energetics of walking and running.
    Bertram JE; Hasaneini SJ
    J Exp Biol; 2013 Mar; 216(Pt 6):933-8. PubMed ID: 23447662
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preserved gait kinematics during controlled body unloading.
    Awai L; Franz M; Easthope CS; Vallery H; Curt A; Bolliger M
    J Neuroeng Rehabil; 2017 Apr; 14(1):25. PubMed ID: 28376829
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanical energy fluctuations during walking of healthy and ACL-reconstructed subjects.
    Winiarski S
    Acta Bioeng Biomech; 2008; 10(2):57-63. PubMed ID: 19031999
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Dynamics of Quadrupedal Walking. 1938 - A step forward for locomotor mechanics.
    Roberts T; Manter JT
    J Exp Biol; 2005 Nov; 208(Pt 22):4191-2. PubMed ID: 16272240
    [No Abstract]   [Full Text] [Related]  

  • 49. Effects of anthropometric parameters and stride frequency on estimation of energy cost of walking.
    Bereket S
    J Sports Med Phys Fitness; 2005 Jun; 45(2):152-61. PubMed ID: 16355075
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of aging and arm swing on the metabolic cost of stability in human walking.
    Ortega JD; Fehlman LA; Farley CT
    J Biomech; 2008 Dec; 41(16):3303-8. PubMed ID: 18814873
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Muscle mechanical work requirements during normal walking: the energetic cost of raising the body's center-of-mass is significant.
    Neptune RR; Zajac FE; Kautz SA
    J Biomech; 2004 Jun; 37(6):817-25. PubMed ID: 15111069
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biomechanical and energetic effects of a stance-control orthotic knee joint.
    Zissimopoulos A; Fatone S; Gard SA
    J Rehabil Res Dev; 2007; 44(4):503-13. PubMed ID: 18247247
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Energy exchange between subject and belt during treadmill walking.
    Sloot LH; van der Krogt MM; Harlaar J
    J Biomech; 2014 Apr; 47(6):1510-3. PubMed ID: 24589022
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A robust machine learning enabled decomposition of shear ground reaction forces during the double contact phase of walking.
    Bastien GJ; Gosseye TP; Penta M
    Gait Posture; 2019 Sep; 73():221-227. PubMed ID: 31374439
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Energy expenditure and gait characteristics of a bilateral amputee walking with C-leg prostheses compared with stubby and conventional articulating prostheses.
    Perry J; Burnfield JM; Newsam CJ; Conley P
    Arch Phys Med Rehabil; 2004 Oct; 85(10):1711-7. PubMed ID: 15468036
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of musculotendon geometry variability in muscle forces and hip bone-on-bone forces during walking.
    Martín-Sosa E; Martínez-Reina J; Mayo J; Ojeda J
    PLoS One; 2019; 14(9):e0222491. PubMed ID: 31553756
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biomechanical Evaluation of Virtual Reality-based Turning on a Self-Paced Linear Treadmill.
    Oh K; Stanley CJ; Damiano DL; Kim J; Yoon J; Park HS
    Gait Posture; 2018 Sep; 65():157-162. PubMed ID: 30510358
    [TBL] [Abstract][Full Text] [Related]  

  • 58. On the effect of walking surface stiffness on inter-limb coordination in human walking: toward bilaterally informed robotic gait rehabilitation.
    Skidmore J; Artemiadis P
    J Neuroeng Rehabil; 2016 Mar; 13():32. PubMed ID: 27004528
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The bipedal saddle space: modelling and validation.
    Tiseo C; Veluvolu KC; Ang WT
    Bioinspir Biomim; 2018 Nov; 14(1):015001. PubMed ID: 30387438
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Individual Differences in Locomotor Function Predict the Capacity to Reduce Asymmetry and Modify the Energetic Cost of Walking Poststroke.
    Sánchez N; Finley JM
    Neurorehabil Neural Repair; 2018 Aug; 32(8):701-713. PubMed ID: 29998788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.