These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 31107668)

  • 1. Evaluating and Enhancing the Generalization Performance of Machine Learning Models for Physical Activity Intensity Prediction From Raw Acceleration Data.
    Farrahi V; Niemela M; Tjurin P; Kangas M; Korpelainen R; Jamsa T
    IEEE J Biomed Health Inform; 2020 Jan; 24(1):27-38. PubMed ID: 31107668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer.
    Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA
    J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices.
    Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M
    J Biomed Inform; 2023 Dec; 148():104556. PubMed ID: 38048895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AccNet24: A deep learning framework for classifying 24-hour activity behaviours from wrist-worn accelerometer data under free-living environments.
    Farrahi V; Muhammad U; Rostami M; Oussalah M
    Int J Med Inform; 2023 Apr; 172():105004. PubMed ID: 36724729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy.
    Ahmadi M; O'Neil M; Fragala-Pinkham M; Lennon N; Trost S
    J Neuroeng Rehabil; 2018 Nov; 15(1):105. PubMed ID: 30442154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classifier Personalization for Activity Recognition Using Wrist Accelerometers.
    Mannini A; Intille SS
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1585-1594. PubMed ID: 30222588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning to quantify habitual physical activity in children with cerebral palsy.
    Goodlich BI; Armstrong EL; Horan SA; Baque E; Carty CP; Ahmadi MN; Trost SG
    Dev Med Child Neurol; 2020 Sep; 62(9):1054-1060. PubMed ID: 32420632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning on Prediction of Relative Physical Activity Intensity Using Medical Radar Sensor and 3D Accelerometer.
    Biró A; Szilágyi SM; Szilágyi L; Martín-Martín J; Cuesta-Vargas AI
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine-learning models for activity class prediction: A comparative study of feature selection and classification algorithms.
    Chong J; Tjurin P; Niemelä M; Jämsä T; Farrahi V
    Gait Posture; 2021 Sep; 89():45-53. PubMed ID: 34225240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensor-enabled Activity Class Recognition in Preschoolers: Hip versus Wrist Data.
    Trost SG; Cliff DP; Ahmadi MN; Tuc NV; Hagenbuchner M
    Med Sci Sports Exerc; 2018 Mar; 50(3):634-641. PubMed ID: 29059107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intensity Thresholds on Raw Acceleration Data: Euclidean Norm Minus One (ENMO) and Mean Amplitude Deviation (MAD) Approaches.
    Bakrania K; Yates T; Rowlands AV; Esliger DW; Bunnewell S; Sanders J; Davies M; Khunti K; Edwardson CL
    PLoS One; 2016; 11(10):e0164045. PubMed ID: 27706241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ngram time series model to predict activity type and energy cost from wrist, hip and ankle accelerometers: implications of age.
    Strath SJ; Kate RJ; Keenan KG; Welch WA; Swartz AM
    Physiol Meas; 2015 Nov; 36(11):2335-51. PubMed ID: 26449155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the Validity and Generalizability of Machine Learning Algorithms for the Prediction of Energy Expenditure: Validation Study.
    O'Driscoll R; Turicchi J; Hopkins M; Duarte C; Horgan GW; Finlayson G; Stubbs RJ
    JMIR Mhealth Uhealth; 2021 Aug; 9(8):e23938. PubMed ID: 34346890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. User-Independent Recognition of Sports Activities From a Single Wrist-Worn Accelerometer: A Template-Matching-Based Approach.
    Margarito J; Helaoui R; Bianchi AM; Sartor F; Bonomi AG
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):788-96. PubMed ID: 26302509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of thigh-mounted triaxial accelerometer algorithms in objective quantification of sedentary behaviour and physical activity in older adults.
    Wullems JA; Verschueren SMP; Degens H; Morse CI; Onambélé GL
    PLoS One; 2017; 12(11):e0188215. PubMed ID: 29155839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An artificial neural network model of energy expenditure using nonintegrated acceleration signals.
    Rothney MP; Neumann M; Béziat A; Chen KY
    J Appl Physiol (1985); 2007 Oct; 103(4):1419-27. PubMed ID: 17641221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical and Machine Learning Models for Classification of Human Wear and Delivery Days in Accelerometry Data.
    Moore R; Archer KR; Choi L
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning algorithms can classify outdoor terrain types during running using accelerometry data.
    Dixon PC; Schütte KH; Vanwanseele B; Jacobs JV; Dennerlein JT; Schiffman JM; Fournier PA; Hu B
    Gait Posture; 2019 Oct; 74():176-181. PubMed ID: 31539798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Dual-Accelerometer System for Detecting Human Movement in a Free-living Environment.
    Narayanan A; Stewart T; Mackay L
    Med Sci Sports Exerc; 2020 Jan; 52(1):252-258. PubMed ID: 31361712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adapted Sojourn Models to Estimate Activity Intensity in Youth: A Suite of Tools.
    Hibbing PR; Ellingson LD; Dixon PM; Welk GJ
    Med Sci Sports Exerc; 2018 Apr; 50(4):846-854. PubMed ID: 29135657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.