BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 31107985)

  • 1. Phosphoinositide 3-kinase δ is a regulatory T-cell target in cancer immunotherapy.
    Lim EL; Okkenhaug K
    Immunology; 2019 Jul; 157(3):210-218. PubMed ID: 31107985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoinositide 3-kinase δ inhibition promotes antitumor responses but antagonizes checkpoint inhibitors.
    Lim EL; Cugliandolo FM; Rosner DR; Gyori D; Roychoudhuri R; Okkenhaug K
    JCI Insight; 2018 Jun; 3(11):. PubMed ID: 29875319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SRC family kinase (SFK) inhibitor dasatinib improves the antitumor activity of anti-PD-1 in NSCLC models by inhibiting Treg cell conversion and proliferation.
    Redin E; Garmendia I; Lozano T; Serrano D; Senent Y; Redrado M; Villalba M; De Andrea CE; Exposito F; Ajona D; Ortiz-Espinosa S; Remirez A; Bertolo C; Sainz C; Garcia-Pedrero J; Pio R; Lasarte J; Agorreta J; Montuenga LM; Calvo A
    J Immunother Cancer; 2021 Mar; 9(3):. PubMed ID: 33658304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor infiltrating regulatory T cells: tractable targets for immunotherapy.
    Khan AR; Dovedi SJ; Wilkinson RW; Pritchard DI
    Int Rev Immunol; 2010 Oct; 29(5):461-84. PubMed ID: 20839911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target?
    Ohue Y; Nishikawa H
    Cancer Sci; 2019 Jul; 110(7):2080-2089. PubMed ID: 31102428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CD8
    Farhood B; Najafi M; Mortezaee K
    J Cell Physiol; 2019 Jun; 234(6):8509-8521. PubMed ID: 30520029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of Phosphatidylinositol 3-Kinase Activity in Regulatory T Cells Leads to Neuronal Inflammation.
    Stark AK; Davenport ECM; Patton DT; Scudamore CL; Vanhaesebroeck B; Veldhoen M; Garden OA; Okkenhaug K
    J Immunol; 2020 Jul; 205(1):78-89. PubMed ID: 32414808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-PD-1 antibody decreases tumour-infiltrating regulatory T cells.
    Yoshida K; Okamoto M; Sasaki J; Kuroda C; Ishida H; Ueda K; Ideta H; Kamanaka T; Sobajima A; Takizawa T; Tanaka M; Aoki K; Uemura T; Kato H; Haniu H; Saito N
    BMC Cancer; 2020 Jan; 20(1):25. PubMed ID: 31914969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intratumoral regulatory T cells: markers, subsets and their impact on anti-tumor immunity.
    Yano H; Andrews LP; Workman CJ; Vignali DAA
    Immunology; 2019 Jul; 157(3):232-247. PubMed ID: 31087644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remodeling of the tumor microenvironment via disrupting Blimp1
    Dixon ML; Luo L; Ghosh S; Grimes JM; Leavenworth JD; Leavenworth JW
    Mol Cancer; 2021 Nov; 20(1):150. PubMed ID: 34798898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of regulatory T cells in cancer.
    Stockis J; Roychoudhuri R; Halim TYF
    Immunology; 2019 Jul; 157(3):219-231. PubMed ID: 31032905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treg programming and therapeutic reprogramming in cancer.
    Moreno Ayala MA; Li Z; DuPage M
    Immunology; 2019 Jul; 157(3):198-209. PubMed ID: 30866047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MEK inhibition prevents tumour-shed transforming growth factor-β-induced T-regulatory cell augmentation in tumour milieu.
    Hossain DM; Panda AK; Chakrabarty S; Bhattacharjee P; Kajal K; Mohanty S; Sarkar I; Sarkar DK; Kar SK; Sa G
    Immunology; 2015 Apr; 144(4):561-73. PubMed ID: 25284464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulatory T cells in cancer: where are we now?
    Gallimore A; Quezada SA; Roychoudhuri R
    Immunology; 2019 Jul; 157(3):187-189. PubMed ID: 31225653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PI3Kγδ inhibitor plus radiation enhances the antitumour immune effect of PD-1 blockade in syngenic murine breast cancer and humanised patient-derived xenograft model.
    Han MG; Jang BS; Kang MH; Na D; Kim IA
    Eur J Cancer; 2021 Nov; 157():450-463. PubMed ID: 34601286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies to Overcome Failures in T-Cell Immunotherapies by Targeting PI3K-δ and -γ.
    Chandrasekaran S; Funk CR; Kleber T; Paulos CM; Shanmugam M; Waller EK
    Front Immunol; 2021; 12():718621. PubMed ID: 34512641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treg-mediated acquired resistance to immune checkpoint inhibitors.
    Saleh R; Elkord E
    Cancer Lett; 2019 Aug; 457():168-179. PubMed ID: 31078738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kras
    Cheng H; Fan K; Luo G; Fan Z; Yang C; Huang Q; Jin K; Xu J; Yu X; Liu C
    Cancer Lett; 2019 Apr; 446():103-111. PubMed ID: 30664964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rationale for anti-CD137 cancer immunotherapy.
    Makkouk A; Chester C; Kohrt HE
    Eur J Cancer; 2016 Feb; 54():112-119. PubMed ID: 26751393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic reprogramming in the tumour microenvironment: a hallmark shared by cancer cells and T lymphocytes.
    Allison KE; Coomber BL; Bridle BW
    Immunology; 2017 Oct; 152(2):175-184. PubMed ID: 28621843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.