BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 31108285)

  • 1. Toxicity of engineered micro- and nanomaterials with antifouling properties to the brine shrimp Artemia salina and embryonic stages of the sea urchin Paracentrotus lividus.
    Gutner-Hoch E; Martins R; Maia F; Oliveira T; Shpigel M; Weis M; Tedim J; Benayahu Y
    Environ Pollut; 2019 Aug; 251():530-537. PubMed ID: 31108285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of seawater properties on toxicity of copper pyrithione and its degradation product to brine shrimp Artemia salina.
    Lavtizar V; Kimura D; Asaoka S; Okamura H
    Ecotoxicol Environ Saf; 2018 Jan; 147():132-138. PubMed ID: 28841528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction and assessment of mixture toxicity of compounds in antifouling paints using the sea-urchin embryo-larval bioassay.
    Bellas J
    Aquat Toxicol; 2008 Jul; 88(4):308-15. PubMed ID: 18586336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficacy and Ecotoxicity of Novel Anti-Fouling Nanomaterials in Target and Non-Target Marine Species.
    Avelelas F; Martins R; Oliveira T; Maia F; Malheiro E; Soares AMVM; Loureiro S; Tedim J
    Mar Biotechnol (NY); 2017 Apr; 19(2):164-174. PubMed ID: 28280946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embryotoxicity of the antifouling biocide zinc pyrithione to sea urchin (Paracentrotus lividus) and mussel (Mytilus edulis).
    Bellas J; Granmo K; Beiras R
    Mar Pollut Bull; 2005 Nov; 50(11):1382-5. PubMed ID: 16023145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primary screening of the bioactivity of brackishwater cyanobacteria: toxicity of crude extracts to Artemia salina larvae and Paracentrotus lividus embryos.
    Lopes VR; Fernández N; Martins RF; Vasconcelos V
    Mar Drugs; 2010 Mar; 8(3):471-82. PubMed ID: 20411110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicity of four antifouling biocides and their mixtures on the brine shrimp Artemia salina.
    Koutsaftis A; Aoyama I
    Sci Total Environ; 2007 Nov; 387(1-3):166-74. PubMed ID: 17765949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute and chronic toxicities of zinc pyrithione alone and in combination with copper to the marine copepod Tigriopus japonicus.
    Bao VW; Lui GC; Leung KM
    Aquat Toxicol; 2014 Dec; 157():81-93. PubMed ID: 25456222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute toxicity of organic antifouling biocides to phytoplankton Nitzschia pungens and zooplankton Artemia larvae.
    Jung SM; Bae JS; Kang SG; Son JS; Jeon JH; Lee HJ; Jeon JY; Sidharthan M; Ryu SH; Shin HW
    Mar Pollut Bull; 2017 Nov; 124(2):811-818. PubMed ID: 27919420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute toxicity of pyrithione antifouling biocides and joint toxicity with copper to red sea bream (Pagrus major) and toy shrimp (Heptacarpus futilirostris).
    Mochida K; Ito K; Harino H; Kakuno A; Fujii K
    Environ Toxicol Chem; 2006 Nov; 25(11):3058-64. PubMed ID: 17089732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicity of the booster biocide Sea-Nine to the early developmental stages of the sea urchin Paracentrotus lividus.
    Bellas J
    Aquat Toxicol; 2007 Jun; 83(1):52-61. PubMed ID: 17434607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative toxicity study of waterborne two booster biocides (CuPT and ZnPT) on embryonic flounder (Paralichthys olivaceus).
    Shin D; Choi Y; Soon ZY; Kim M; Kim DJ; Jung JH
    Ecotoxicol Environ Saf; 2022 Mar; 233():113337. PubMed ID: 35219958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species.
    Bao VW; Leung KM; Qiu JW; Lam MH
    Mar Pollut Bull; 2011 May; 62(5):1147-51. PubMed ID: 21420693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of new antifouling compounds on the development of sea urchin.
    Kobayashi N; Okamura H
    Mar Pollut Bull; 2002 Aug; 44(8):748-51. PubMed ID: 12269477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity evaluation of single and mixed antifouling biocides using the Strongylocentrotus intermedius sea urchin embryo test.
    Wang H; Li Y; Huang H; Xu X; Wang Y
    Environ Toxicol Chem; 2011 Mar; 30(3):692-703. PubMed ID: 21154844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sperm exposure to carbon-based nanomaterials causes abnormalities in early development of purple sea urchin (Paracentrotus lividus).
    Mesarič T; Sepčić K; Drobne D; Makovec D; Faimali M; Morgana S; Falugi C; Gambardella C
    Aquat Toxicol; 2015 Jun; 163():158-66. PubMed ID: 25897690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicity reduction of metal pyrithiones by near ultraviolet irradiation.
    Okamura H; Kobayashi N; Miyanaga M; Nogami Y
    Environ Toxicol; 2006 Aug; 21(4):305-9. PubMed ID: 16841307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper pyrithione, a booster biocide, induces abnormal muscle and notochord architecture in zebrafish embryogenesis.
    Almond KM; Trombetta LD
    Ecotoxicology; 2017 Sep; 26(7):855-867. PubMed ID: 28573481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review.
    Amara I; Miled W; Slama RB; Ladhari N
    Environ Toxicol Pharmacol; 2018 Jan; 57():115-130. PubMed ID: 29258017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spermiotoxicity and embryotoxicity of permethrin in the sea urchin Paracentrotus lividus.
    Erkmen B
    Bull Environ Contam Toxicol; 2015 Apr; 94(4):419-24. PubMed ID: 25634326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.