BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 31108298)

  • 1. NH
    Yang YP; Wang P; Yan HJ; Zhang HM; Cheng WD; Duan GL; Zhu YG
    Environ Pollut; 2019 Aug; 251():651-658. PubMed ID: 31108298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response of pepper plants (Capsicum annum L.) on soil amendment by inorganic and organic compounds of arsenic.
    Száková J; Tlustos P; Goessler W; Pavlíková D; Schmeisser E
    Arch Environ Contam Toxicol; 2007 Jan; 52(1):38-46. PubMed ID: 17031752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cd accumulation and transfer in pepper (Capsicum annuum L.) grown in typical soils of China: pot experiments.
    Wang Y; Su Y; Lu S
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):36558-36567. PubMed ID: 31728951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoavailability and transfer of mercury in soil-pepper system: Influencing factors, fate, and predictive approach for effective management of metal-impacted spiked soils.
    Hussain S; Yang J; Hussain J; Hussain I; Kumar M; Ullah S; Zhang L; Xia X; Jia Y; Ma Y; Gao Y
    Environ Res; 2022 May; 207():112190. PubMed ID: 34624269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioavailable arsenic and amorphous iron oxides provide reliable predictions for arsenic transfer in soil-wheat system.
    Chen P; Zhang HM; Yao BM; Chen SC; Sun GX; Zhu YG
    J Hazard Mater; 2020 Feb; 383():121160. PubMed ID: 31518812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fate and bioavailability of arsenic in organo-arsenical pesticide-applied soils. Part-I: incubation study.
    Sarkar D; Datta R; Sharma S
    Chemosphere; 2005 Jul; 60(2):188-95. PubMed ID: 15914238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Evaluation of the mercury accumulating capacity of pepper (Capsicum annuum)].
    Pérez-Vargas HM; Vidal-Durango JV; Marrugo-Negrete JL
    Rev Salud Publica (Bogota); 2014; 16(6):897-909. PubMed ID: 26120859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The rhizospheric transformation and bioavailability of mercury in pepper plants are influenced by selected Chinese soil types.
    Hussain S; Jianjun Y; Hussain J; Zandi P; Subhanullah ; Xing X; Liandong Z; Yu T; Ali A; Kebin Z
    Environ Geochem Health; 2023 Jan; 45(1):41-52. PubMed ID: 35124755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of arsenic speciation and the possible source of methylated arsenic in Panax Notoginseng.
    Zhu M; Zeng X; Jiang Y; Fan X; Chao S; Cao H; Zhang W
    Chemosphere; 2017 Feb; 168():1677-1683. PubMed ID: 27932037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic hyperaccumulation and speciation in the edible ink stain bolete (Cyanoboletus pulverulentus).
    Braeuer S; Goessler W; Kameník J; Konvalinková T; Žigová A; Borovička J
    Food Chem; 2018 Mar; 242():225-231. PubMed ID: 29037683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic biogeochemistry and human health risk assessment in organo-arsenical pesticide-applied acidic and alkaline soils: an incubation study.
    Datta R; Sarkar D; Sharma S; Sand K
    Sci Total Environ; 2006 Dec; 372(1):39-48. PubMed ID: 16973204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screening Capsicum chinense fruits for heavy metals bioaccumulation.
    Antonious GF; Snyder JC; Berke T; Jarret RL
    J Environ Sci Health B; 2010 Aug; 45(6):562-71. PubMed ID: 20635296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliable model established depending on soil properties to assess arsenic uptake by Brassica chinensis.
    Dai Y; Xu W; Nasir M; Zhang Y; Lyu J
    Ecotoxicol Environ Saf; 2019 Jan; 167():54-59. PubMed ID: 30292976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic in rice agrosystems (water, soil and rice plants) in Guayas and Los Ríos provinces, Ecuador.
    Otero XL; Tierra W; Atiaga O; Guanoluisa D; Nunes LM; Ferreira TO; Ruales J
    Sci Total Environ; 2016 Dec; 573():778-787. PubMed ID: 27592465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation of Cu, Zn, Pb, and Cd in edible parts of four commonly grown crops in two contaminated soils.
    Hao X; Zhou D; Wang Y; Shi F; Jiang P
    Int J Phytoremediation; 2011 Mar; 13(3):289-301. PubMed ID: 21598793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mobility of heavy metals from soil into hot pepper fruits: a field study.
    Antonious GF; Kochhar TS
    Bull Environ Contam Toxicol; 2009 Jan; 82(1):59-63. PubMed ID: 18758679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic species formed from arsenopyrite weathering along a contamination gradient in Circumneutral river floodplain soils.
    Mandaliev PN; Mikutta C; Barmettler K; Kotsev T; Kretzschmar R
    Environ Sci Technol; 2014; 48(1):208-17. PubMed ID: 24283255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic mobility and speciation in contaminated kitchen garden and lawn soils: an evaluation of water for assessment of As phytoavailability.
    Waterlot C; Douay F
    Environ Sci Pollut Res Int; 2015 Apr; 22(8):6164-75. PubMed ID: 25399530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.