These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 31108298)

  • 1. NH
    Yang YP; Wang P; Yan HJ; Zhang HM; Cheng WD; Duan GL; Zhu YG
    Environ Pollut; 2019 Aug; 251():651-658. PubMed ID: 31108298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response of pepper plants (Capsicum annum L.) on soil amendment by inorganic and organic compounds of arsenic.
    Száková J; Tlustos P; Goessler W; Pavlíková D; Schmeisser E
    Arch Environ Contam Toxicol; 2007 Jan; 52(1):38-46. PubMed ID: 17031752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cd accumulation and transfer in pepper (Capsicum annuum L.) grown in typical soils of China: pot experiments.
    Wang Y; Su Y; Lu S
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):36558-36567. PubMed ID: 31728951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoavailability and transfer of mercury in soil-pepper system: Influencing factors, fate, and predictive approach for effective management of metal-impacted spiked soils.
    Hussain S; Yang J; Hussain J; Hussain I; Kumar M; Ullah S; Zhang L; Xia X; Jia Y; Ma Y; Gao Y
    Environ Res; 2022 May; 207():112190. PubMed ID: 34624269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioavailable arsenic and amorphous iron oxides provide reliable predictions for arsenic transfer in soil-wheat system.
    Chen P; Zhang HM; Yao BM; Chen SC; Sun GX; Zhu YG
    J Hazard Mater; 2020 Feb; 383():121160. PubMed ID: 31518812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fate and bioavailability of arsenic in organo-arsenical pesticide-applied soils. Part-I: incubation study.
    Sarkar D; Datta R; Sharma S
    Chemosphere; 2005 Jul; 60(2):188-95. PubMed ID: 15914238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Evaluation of the mercury accumulating capacity of pepper (Capsicum annuum)].
    Pérez-Vargas HM; Vidal-Durango JV; Marrugo-Negrete JL
    Rev Salud Publica (Bogota); 2014; 16(6):897-909. PubMed ID: 26120859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The rhizospheric transformation and bioavailability of mercury in pepper plants are influenced by selected Chinese soil types.
    Hussain S; Jianjun Y; Hussain J; Zandi P; Subhanullah ; Xing X; Liandong Z; Yu T; Ali A; Kebin Z
    Environ Geochem Health; 2023 Jan; 45(1):41-52. PubMed ID: 35124755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of arsenic speciation and the possible source of methylated arsenic in Panax Notoginseng.
    Zhu M; Zeng X; Jiang Y; Fan X; Chao S; Cao H; Zhang W
    Chemosphere; 2017 Feb; 168():1677-1683. PubMed ID: 27932037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic hyperaccumulation and speciation in the edible ink stain bolete (Cyanoboletus pulverulentus).
    Braeuer S; Goessler W; Kameník J; Konvalinková T; Žigová A; Borovička J
    Food Chem; 2018 Mar; 242():225-231. PubMed ID: 29037683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic biogeochemistry and human health risk assessment in organo-arsenical pesticide-applied acidic and alkaline soils: an incubation study.
    Datta R; Sarkar D; Sharma S; Sand K
    Sci Total Environ; 2006 Dec; 372(1):39-48. PubMed ID: 16973204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screening Capsicum chinense fruits for heavy metals bioaccumulation.
    Antonious GF; Snyder JC; Berke T; Jarret RL
    J Environ Sci Health B; 2010 Aug; 45(6):562-71. PubMed ID: 20635296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliable model established depending on soil properties to assess arsenic uptake by Brassica chinensis.
    Dai Y; Xu W; Nasir M; Zhang Y; Lyu J
    Ecotoxicol Environ Saf; 2019 Jan; 167():54-59. PubMed ID: 30292976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic in rice agrosystems (water, soil and rice plants) in Guayas and Los Ríos provinces, Ecuador.
    Otero XL; Tierra W; Atiaga O; Guanoluisa D; Nunes LM; Ferreira TO; Ruales J
    Sci Total Environ; 2016 Dec; 573():778-787. PubMed ID: 27592465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation of Cu, Zn, Pb, and Cd in edible parts of four commonly grown crops in two contaminated soils.
    Hao X; Zhou D; Wang Y; Shi F; Jiang P
    Int J Phytoremediation; 2011 Mar; 13(3):289-301. PubMed ID: 21598793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mobility of heavy metals from soil into hot pepper fruits: a field study.
    Antonious GF; Kochhar TS
    Bull Environ Contam Toxicol; 2009 Jan; 82(1):59-63. PubMed ID: 18758679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic species formed from arsenopyrite weathering along a contamination gradient in Circumneutral river floodplain soils.
    Mandaliev PN; Mikutta C; Barmettler K; Kotsev T; Kretzschmar R
    Environ Sci Technol; 2014; 48(1):208-17. PubMed ID: 24283255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic mobility and speciation in contaminated kitchen garden and lawn soils: an evaluation of water for assessment of As phytoavailability.
    Waterlot C; Douay F
    Environ Sci Pollut Res Int; 2015 Apr; 22(8):6164-75. PubMed ID: 25399530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.