These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 31108592)
21. Forecasting synchronizability of complex networks from data. Su RQ; Ni X; Wang WX; Lai YC Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056220. PubMed ID: 23004856 [TBL] [Abstract][Full Text] [Related]
22. Multiple effects of gradient coupling on network synchronization. Wang X; Zhou C; Lai CH Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056208. PubMed ID: 18643143 [TBL] [Abstract][Full Text] [Related]
23. Better synchronizability in generalized adaptive networks. Zhu JF; Zhao M; Yu W; Zhou C; Wang BH Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026201. PubMed ID: 20365632 [TBL] [Abstract][Full Text] [Related]
24. Enhancement of dynamical robustness in a mean-field coupled network through self-feedback delay. Sharma A; Rakshit B Chaos; 2021 Jan; 31(1):013114. PubMed ID: 33754750 [TBL] [Abstract][Full Text] [Related]
25. Synchronizability of double-layer dumbbell networks. Li J; Luan Y; Wu X; Lu JA Chaos; 2021 Jul; 31(7):073101. PubMed ID: 34340337 [TBL] [Abstract][Full Text] [Related]
26. Assessing synchronizability provided by coupling variable from the algebraic structure of dynamical systems. Letellier C Phys Rev E; 2020 Apr; 101(4-1):042215. PubMed ID: 32422746 [TBL] [Abstract][Full Text] [Related]
27. Network structure from a characterization of interactions in complex systems. Rings T; Bröhl T; Lehnertz K Sci Rep; 2022 Jul; 12(1):11742. PubMed ID: 35817803 [TBL] [Abstract][Full Text] [Related]
28. Engineering synchronization of chaotic oscillators using controller based coupling design. Padmanaban E; Hens C; Dana SK Chaos; 2011 Mar; 21(1):013110. PubMed ID: 21456824 [TBL] [Abstract][Full Text] [Related]
29. Enhanced synchronizability by structural perturbations. Zhao M; Zhou T; Wang BH; Wang WX Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):057102. PubMed ID: 16383792 [TBL] [Abstract][Full Text] [Related]
30. Partial synchronization in networks of non-linearly coupled oscillators: The Deserter Hubs Model. Freitas C; Macau E; Pikovsky A Chaos; 2015 Apr; 25(4):043119. PubMed ID: 25933667 [TBL] [Abstract][Full Text] [Related]
32. Decoupling process for better synchronizability on scale-free networks. Yin CY; Wang WX; Chen G; Wang BH Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):047102. PubMed ID: 17155217 [TBL] [Abstract][Full Text] [Related]
33. Directed adaptation of synchronization levels in oscillator communities. Fengler E; Totz JF; Kaluza P; Engel H Chaos; 2019 Jun; 29(6):063101. PubMed ID: 31266320 [TBL] [Abstract][Full Text] [Related]
34. Bifurcation behaviors of synchronized regions in logistic map networks with coupling delay. Tang L; Wu X; Lü J; Lu JA Chaos; 2015 Mar; 25(3):033101. PubMed ID: 25833423 [TBL] [Abstract][Full Text] [Related]
35. Experimental approach to the study of complex network synchronization using a single oscillator. Pisarchik AN; Jaimes-Reátegui R; Sevilla-Escoboza R; Boccaletti S Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):055202. PubMed ID: 19518511 [TBL] [Abstract][Full Text] [Related]
36. Synchronization of intermittent behavior in ensembles of multistable dynamical systems. Sevilla-Escoboza R; Buldú JM; Pisarchik AN; Boccaletti S; Gutiérrez R Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032902. PubMed ID: 25871167 [TBL] [Abstract][Full Text] [Related]
37. Dynamic synchronization of a time-evolving optical network of chaotic oscillators. Cohen AB; Ravoori B; Sorrentino F; Murphy TE; Ott E; Roy R Chaos; 2010 Dec; 20(4):043142. PubMed ID: 21198112 [TBL] [Abstract][Full Text] [Related]
38. Network synchronization, diffusion, and the paradox of heterogeneity. Motter AE; Zhou C; Kurths J Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016116. PubMed ID: 15697667 [TBL] [Abstract][Full Text] [Related]
39. Growth, collapse, and self-organized criticality in complex networks. Wang Y; Fan H; Lin W; Lai YC; Wang X Sci Rep; 2016 Apr; 6():24445. PubMed ID: 27079515 [TBL] [Abstract][Full Text] [Related]
40. The key player problem in complex oscillator networks and electric power grids: Resistance centralities identify local vulnerabilities. Tyloo M; Pagnier L; Jacquod P Sci Adv; 2019 Nov; 5(11):eaaw8359. PubMed ID: 31803830 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]