These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31108619)

  • 1. Polarized angular-dependent reflectivity and density-dependent profiles of shock-compressed xenon plasmas.
    Zaporozhets Y; Mintsev V; Fortov V; Reinholz H; Röpke G; Rosmej S; Omarbakiyeva YA
    Phys Rev E; 2019 Apr; 99(4-1):043202. PubMed ID: 31108619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency-dependent reflectivity of shock-compressed xenon plasmas.
    Reinholz H; Zaporoghets Y; Mintsev V; Fortov V; Morozov I; Röpke G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036403. PubMed ID: 14524899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brewster angle and reflectivity of optically nonuniform dense plasmas.
    Norman G; Saitov I
    Phys Rev E; 2016 Oct; 94(4-1):043202. PubMed ID: 27841633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature measurements of shock compressed liquid deuterium up to 230 GPa.
    Collins GW; Celliers PM; Da Silva LB; Cauble R; Gold DM; Foord ME; Holmes NC; Hammel BA; Wallace RJ; Ng A
    Phys Rev Lett; 2001 Oct; 87(16):165504. PubMed ID: 11690211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hugoniot measurements of double-shocked precompressed dense xenon plasmas.
    Zheng J; Chen QF; Gu YJ; Chen ZY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066406. PubMed ID: 23368058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong double-layer formation by shock waves in nonequilibrium plasmas.
    Bletzinger P; Ganguly BN; Garscadden A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):047401. PubMed ID: 12786536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab initio calculation of shocked xenon reflectivity.
    Norman G; Saitov I; Stegailov V; Zhilyaev P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023105. PubMed ID: 25768616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser requirements for the design of fast laser-driven semiconductor switches for THz and mm-waves.
    Schaub SC; Cohick ZW; Hoff BW
    Rev Sci Instrum; 2021 Nov; 92(11):113106. PubMed ID: 34852508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton radiography of a shock-compressed target.
    Ravasio A; Romagnani L; Le Pape S; Benuzzi-Mounaix A; Cecchetti C; Batani D; Boehly T; Borghesi M; Dezulian R; Gremillet L; Henry E; Hicks D; Loupias B; MacKinnon A; Ozaki N; Park HS; Patel P; Schiavi A; Vinci T; Clarke R; Notley M; Bandyopadhyay S; Koenig M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016407. PubMed ID: 20866747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser-driven shock compression of "synthetic planetary mixtures" of water, ethanol, and ammonia.
    Guarguaglini M; Hernandez JA; Okuchi T; Barroso P; Benuzzi-Mounaix A; Bethkenhagen M; Bolis R; Brambrink E; French M; Fujimoto Y; Kodama R; Koenig M; Lefevre F; Miyanishi K; Ozaki N; Redmer R; Sano T; Umeda Y; Vinci T; Ravasio A
    Sci Rep; 2019 Jul; 9(1):10155. PubMed ID: 31300690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermophysical properties of multi-shock compressed dense argon.
    Chen QF; Zheng J; Gu YJ; Chen YL; Cai LC; Shen ZJ
    J Chem Phys; 2014 Feb; 140(7):074202. PubMed ID: 24559345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collision-induced light scattering in a thin xenon layer between graphite slabs - MD study.
    Dawid A; Górny K; Wojcieszyk D; Dendzik Z; Gburski Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Aug; 129():594-600. PubMed ID: 24755364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shock compression of a fifth period element: liquid xenon to 840 GPa.
    Root S; Magyar RJ; Carpenter JH; Hanson DL; Mattsson TR
    Phys Rev Lett; 2010 Aug; 105(8):085501. PubMed ID: 20868109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absolute Hugoniot measurements from a spherically convergent shock using x-ray radiography.
    Swift DC; Kritcher AL; Hawreliak JA; Lazicki A; MacPhee A; Bachmann B; Döppner T; Nilsen J; Collins GW; Glenzer S; Rothman SD; Kraus D; Falcone RW
    Rev Sci Instrum; 2018 May; 89(5):053505. PubMed ID: 29864815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collisional absorption of dense plasmas in strong laser fields: quantum statistical results and simulation.
    Hilse P; Schlanges M; Bornath T; Kremp D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056408. PubMed ID: 16089661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluid pressure diffusion effects on the seismic reflectivity of a single fracture.
    Barbosa ND; Rubino JG; Caspari E; Milani M; Holliger K
    J Acoust Soc Am; 2016 Oct; 140(4):2554. PubMed ID: 27794328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Standing wave approach in the theory of X-ray magnetic reflectivity.
    Andreeva MA; Baulin RA; Repchenko YL
    J Synchrotron Radiat; 2019 Mar; 26(Pt 2):483-496. PubMed ID: 30855259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a broadband reflectivity diagnostic for laser driven shock compression experiments.
    Ali SJ; Bolme CA; Collins GW; Jeanloz R
    Rev Sci Instrum; 2015 Apr; 86(4):043112. PubMed ID: 25933846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reflectivity and scattering measurements of an Advanced X-ray Astrophysics Facility test coating sample.
    Bixler JV; Mauche CW; Hailey CJ; Madison L
    Appl Opt; 1995 Oct; 34(28):6542-51. PubMed ID: 21060508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurements of terahertz electrical conductivity of intense laser-heated dense aluminum plasmas.
    Kim KY; Yellampalle B; Glownia JH; Taylor AJ; Rodriguez G
    Phys Rev Lett; 2008 Apr; 100(13):135002. PubMed ID: 18517962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.