These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 31108665)
1. Active lift inversion process of heaving wing in uniform flow by temporal change of wing kinematics. Iima M; Yokoyama N; Senda K Phys Rev E; 2019 Apr; 99(4-1):043110. PubMed ID: 31108665 [TBL] [Abstract][Full Text] [Related]
2. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. Thomas AL; Taylor GK; Srygley RB; Nudds RL; Bomphrey RJ J Exp Biol; 2004 Nov; 207(Pt 24):4299-323. PubMed ID: 15531651 [TBL] [Abstract][Full Text] [Related]
3. When vortices stick: an aerodynamic transition in tiny insect flight. Miller LA; Peskin CS J Exp Biol; 2004 Aug; 207(Pt 17):3073-88. PubMed ID: 15277562 [TBL] [Abstract][Full Text] [Related]
4. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing. Phillips N; Knowles K; Bomphrey RJ Bioinspir Biomim; 2015 Oct; 10(5):056020. PubMed ID: 26451802 [TBL] [Abstract][Full Text] [Related]
5. Enhancing Energy Harvesting Efficiency of Flapping Wings with Leading-Edge Magnus Effect Cylinder. Zhang H; Zhu B; Chen W Biomimetics (Basel); 2024 May; 9(5):. PubMed ID: 38786503 [TBL] [Abstract][Full Text] [Related]
6. On aerodynamic modelling of an insect-like flapping wing in hover for micro air vehicles. Zbikowski R Philos Trans A Math Phys Eng Sci; 2002 Feb; 360(1791):273-90. PubMed ID: 16210181 [TBL] [Abstract][Full Text] [Related]
7. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect. Van Truong T; Byun D; Kim MJ; Yoon KJ; Park HC Bioinspir Biomim; 2013 Sep; 8(3):036007. PubMed ID: 23851351 [TBL] [Abstract][Full Text] [Related]
9. The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings. Maybury WJ; Lehmann FO J Exp Biol; 2004 Dec; 207(Pt 26):4707-26. PubMed ID: 15579564 [TBL] [Abstract][Full Text] [Related]
10. Experimental and numerical studies of beetle-inspired flapping wing in hovering flight. Van Truong T; Le TQ; Park HC; Byun D Bioinspir Biomim; 2017 May; 12(3):036012. PubMed ID: 28513472 [TBL] [Abstract][Full Text] [Related]
11. The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings. Lehmann FO; Pick S J Exp Biol; 2007 Apr; 210(Pt 8):1362-77. PubMed ID: 17401119 [TBL] [Abstract][Full Text] [Related]
12. Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Taylor GK; Nudds RL; Thomas AL Nature; 2003 Oct; 425(6959):707-11. PubMed ID: 14562101 [TBL] [Abstract][Full Text] [Related]
13. Spanwise gradients in flow speed help stabilize leading-edge vortices on revolving wings. Jardin T; David L Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013011. PubMed ID: 25122373 [TBL] [Abstract][Full Text] [Related]
14. Spanwise flow and the attachment of the leading-edge vortex on insect wings. Birch JM; Dickinson MH Nature; 2001 Aug; 412(6848):729-33. PubMed ID: 11507639 [TBL] [Abstract][Full Text] [Related]
15. An experimental study of trailing edge noise from a heaving airfoil. Zhou T; Zhang X; Zhong S J Acoust Soc Am; 2020 Jun; 147(6):4020. PubMed ID: 32611152 [TBL] [Abstract][Full Text] [Related]
16. A computational fluid dynamics of 'clap and fling' in the smallest insects. Miller LA; Peskin CS J Exp Biol; 2005 Jan; 208(Pt 2):195-212. PubMed ID: 15634840 [TBL] [Abstract][Full Text] [Related]
17. The role of the leading edge vortex in lift augmentation of steadily revolving wings: a change in perspective. Nabawy MRA; Crowther WJ J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28747395 [TBL] [Abstract][Full Text] [Related]
18. The aerodynamic effects of wing-wing interaction in flapping insect wings. Lehmann FO; Sane SP; Dickinson M J Exp Biol; 2005 Aug; 208(Pt 16):3075-92. PubMed ID: 16081606 [TBL] [Abstract][Full Text] [Related]
19. Computational investigation of cicada aerodynamics in forward flight. Wan H; Dong H; Gai K J R Soc Interface; 2015 Jan; 12(102):20141116. PubMed ID: 25551136 [TBL] [Abstract][Full Text] [Related]
20. Bat flight generates complex aerodynamic tracks. Hedenström A; Johansson LC; Wolf M; von Busse R; Winter Y; Spedding GR Science; 2007 May; 316(5826):894-7. PubMed ID: 17495171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]