These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 31108671)
1. High-order lattice-Boltzmann model for the Cahn-Hilliard equation. Zhang C; Guo Z; Liang H Phys Rev E; 2019 Apr; 99(4-1):043310. PubMed ID: 31108671 [TBL] [Abstract][Full Text] [Related]
2. Phase-field lattice Boltzmann model for interface tracking of a binary fluid system based on the Allen-Cahn equation. Zu YQ; Li AD; Wei H Phys Rev E; 2020 Nov; 102(5-1):053307. PubMed ID: 33327126 [TBL] [Abstract][Full Text] [Related]
3. Comparative study of the lattice Boltzmann models for Allen-Cahn and Cahn-Hilliard equations. Wang HL; Chai ZH; Shi BC; Liang H Phys Rev E; 2016 Sep; 94(3-1):033304. PubMed ID: 27739765 [TBL] [Abstract][Full Text] [Related]
4. Improved lattice Boltzmann modeling of binary flow based on the conservative Allen-Cahn equation. Ren F; Song B; Sukop MC; Hu H Phys Rev E; 2016 Aug; 94(2-1):023311. PubMed ID: 27627416 [TBL] [Abstract][Full Text] [Related]
5. Study of phase-field lattice Boltzmann models based on the conservative Allen-Cahn equation. Begmohammadi A; Haghani-Hassan-Abadi R; Fakhari A; Bolster D Phys Rev E; 2020 Aug; 102(2-1):023305. PubMed ID: 32942360 [TBL] [Abstract][Full Text] [Related]
6. Lattice Boltzmann equation method for the Cahn-Hilliard equation. Zheng L; Zheng S; Zhai Q Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013309. PubMed ID: 25679741 [TBL] [Abstract][Full Text] [Related]
7. Phase-field-based lattice Boltzmann model for immiscible incompressible N-phase flows. Yuan X; Liang H; Chai Z; Shi B Phys Rev E; 2020 Jun; 101(6-1):063310. PubMed ID: 32688516 [TBL] [Abstract][Full Text] [Related]
8. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows. Liu H; Valocchi AJ; Zhang Y; Kang Q Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013010. PubMed ID: 23410429 [TBL] [Abstract][Full Text] [Related]
9. Phase-field lattice Boltzmann model with singular mobility for quasi-incompressible two-phase flows. Bao J; Guo Z Phys Rev E; 2024 Feb; 109(2-2):025302. PubMed ID: 38491598 [TBL] [Abstract][Full Text] [Related]
11. Lattice Boltzmann model for wave propagation. Zhang J; Yan G; Shi X Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026706. PubMed ID: 19792280 [TBL] [Abstract][Full Text] [Related]
12. Interface tracking characteristics of color-gradient lattice Boltzmann model for immiscible fluids. Subhedar A; Reiter A; Selzer M; Varnik F; Nestler B Phys Rev E; 2020 Jan; 101(1-1):013313. PubMed ID: 32069649 [TBL] [Abstract][Full Text] [Related]
13. Improved hybrid Allen-Cahn phase-field-based lattice Boltzmann method for incompressible two-phase flows. Liu X; Chai Z; Shi B Phys Rev E; 2023 Mar; 107(3-2):035308. PubMed ID: 37073063 [TBL] [Abstract][Full Text] [Related]
14. Hybrid Allen-Cahn-based lattice Boltzmann model for incompressible two-phase flows: The reduction of numerical dispersion. Hu Y; Li D; Jin L; Niu X; Shu S Phys Rev E; 2019 Feb; 99(2-1):023302. PubMed ID: 30934363 [TBL] [Abstract][Full Text] [Related]
15. Numerical method based on the lattice Boltzmann model for the Fisher equation. Yan G; Zhang J; Dong Y Chaos; 2008 Jun; 18(2):023131. PubMed ID: 18601497 [TBL] [Abstract][Full Text] [Related]
16. A Unified Lattice Boltzmann Model for Fourth Order Partial Differential Equations with Variable Coefficients. Yang W; Li C Entropy (Basel); 2022 Aug; 24(9):. PubMed ID: 36141062 [TBL] [Abstract][Full Text] [Related]
17. Conservative phase-field method with a parallel and adaptive-mesh-refinement technique for interface tracking. Zhang A; Du J; Guo Z; Wang Q; Xiong S Phys Rev E; 2019 Aug; 100(2-1):023305. PubMed ID: 31574730 [TBL] [Abstract][Full Text] [Related]
18. Lattice Boltzmann solution of the transient Boltzmann transport equation in radiative and neutron transport. Wang Y; Yan L; Ma Y Phys Rev E; 2017 Jun; 95(6-1):063313. PubMed ID: 28709204 [TBL] [Abstract][Full Text] [Related]
19. Mass conservative lattice Boltzmann scheme for a three-dimensional diffuse interface model with Peng-Robinson equation of state. Qiao Z; Yang X; Zhang Y Phys Rev E; 2018 Aug; 98(2-1):023306. PubMed ID: 30253477 [TBL] [Abstract][Full Text] [Related]
20. Phase-field method based on discrete unified gas-kinetic scheme for large-density-ratio two-phase flows. Yang Z; Zhong C; Zhuo C Phys Rev E; 2019 Apr; 99(4-1):043302. PubMed ID: 31108650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]