These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 31108763)
1. Structure of gellan gum-hydrolyzed collagen particles: Effect of starch addition and coating layer. Souza Almeida F; Kawazoe Sato AC Food Res Int; 2019 Jul; 121():394-403. PubMed ID: 31108763 [TBL] [Abstract][Full Text] [Related]
2. Starch can act differently when combined with alginate or gellan gum to form hydrogels. Bagnolo LM; Almeida FS; Silva KCG; Sato ACK Food Res Int; 2023 Nov; 173(Pt 1):113333. PubMed ID: 37803642 [TBL] [Abstract][Full Text] [Related]
3. Preparation, physicochemical characterization and in vitro release behavior of resveratrol-loaded oxidized gellan gum/resistant starch hydrogel beads. Wang P; Luo ZG; Xiao ZG Carbohydr Polym; 2021 May; 260():117794. PubMed ID: 33712142 [TBL] [Abstract][Full Text] [Related]
4. Performance of new gellan gum hydrogels combined with human articular chondrocytes for cartilage regeneration when subcutaneously implanted in nude mice. Oliveira JT; Santos TC; Martins L; Silva MA; Marques AP; Castro AG; Neves NM; Reis RL J Tissue Eng Regen Med; 2009 Oct; 3(7):493-500. PubMed ID: 19598145 [TBL] [Abstract][Full Text] [Related]
5. Self-mineralizing Ca-enriched methacrylated gellan gum beads for bone tissue engineering. Vieira S; da Silva Morais A; Garet E; Silva-Correia J; Reis RL; González-Fernández Á; Miguel Oliveira J Acta Biomater; 2019 Jul; 93():74-85. PubMed ID: 30708066 [TBL] [Abstract][Full Text] [Related]
6. Development and characterization of cross-linked gellan gum and retrograded starch blend hydrogels for drug delivery applications. Oliveira Cardoso VM; Stringhetti Ferreira Cury B; Evangelista RC; Daflon Gremião MP J Mech Behav Biomed Mater; 2017 Jan; 65():317-333. PubMed ID: 27631170 [TBL] [Abstract][Full Text] [Related]
7. Effects of enriching with gellan gum on the structural, functional, and degradation properties of egg white heat-induced hydrogels. Babaei J; Khodaiyan F; Mohammadian M Int J Biol Macromol; 2019 May; 128():94-100. PubMed ID: 30682479 [TBL] [Abstract][Full Text] [Related]
8. Engineering retinal pigment epithelial cells regeneration for transplantation in regenerative medicine using PEG/Gellan gum hydrogels. Kim HS; Kim D; Jeong YW; Choi MJ; Lee GW; Thangavelu M; Song JE; Khang G Int J Biol Macromol; 2019 Jun; 130():220-228. PubMed ID: 30660570 [TBL] [Abstract][Full Text] [Related]
9. Biodegradation behavior of gellan gum in simulated colonic media. Singh BN; Trombetta LD; Kim KH Pharm Dev Technol; 2004 Nov; 9(4):399-407. PubMed ID: 15581076 [TBL] [Abstract][Full Text] [Related]
10. Controlling the rheology of gellan gum hydrogels in cell culture conditions. Moxon SR; Smith AM Int J Biol Macromol; 2016 Mar; 84():79-86. PubMed ID: 26683878 [TBL] [Abstract][Full Text] [Related]
11. Chitosan fibers enhanced gellan gum hydrogels with superior mechanical properties and water-holding capacity. Liu L; Wang B; Gao Y; Bai TC Carbohydr Polym; 2013 Aug; 97(1):152-8. PubMed ID: 23769531 [TBL] [Abstract][Full Text] [Related]
12. Enhanced gelation properties of purified gellan gum. Kirchmajer DM; Steinhoff B; Warren H; Clark R; in het Panhuis M Carbohydr Res; 2014 Mar; 388():125-9. PubMed ID: 24637048 [TBL] [Abstract][Full Text] [Related]
13. Differentiation of osteoclast precursors on gellan gum-based spongy-like hydrogels for bone tissue engineering. Maia FR; Musson DS; Naot D; da Silva LP; Bastos AR; Costa JB; Oliveira JM; Correlo VM; Reis RL; Cornish J Biomed Mater; 2018 Mar; 13(3):035012. PubMed ID: 29442071 [TBL] [Abstract][Full Text] [Related]
14. Nanoparticulate bioactive-glass-reinforced gellan-gum hydrogels for bone-tissue engineering. Gantar A; da Silva LP; Oliveira JM; Marques AP; Correlo VM; Novak S; Reis RL Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():27-36. PubMed ID: 25175184 [TBL] [Abstract][Full Text] [Related]
15. In vitro and in vivo ocular safety and eye surface permanence determination by direct and Magnetic Resonance Imaging of ion-sensitive hydrogels based on gellan gum and kappa-carrageenan. Fernández-Ferreiro A; González Barcia M; Gil-Martínez M; Vieites-Prado A; Lema I; Argibay B; Blanco Méndez J; Lamas MJ; Otero-Espinar FJ Eur J Pharm Biopharm; 2015 Aug; 94():342-51. PubMed ID: 26079831 [TBL] [Abstract][Full Text] [Related]
16. Effect of glycerol on the physical and mechanical properties of thin gellan gum films for oral drug delivery. Paolicelli P; Petralito S; Varani G; Nardoni M; Pacelli S; Di Muzio L; Tirillò J; Bartuli C; Cesa S; Casadei MA; Adrover A Int J Pharm; 2018 Aug; 547(1-2):226-234. PubMed ID: 29787893 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of Porous α-TCP/Gellan Gum Scaffold for Bone Tissue Engineering. Wen J; Kim IY; Kikuta K; Ohtsuki C J Nanosci Nanotechnol; 2016 Mar; 16(3):3077-83. PubMed ID: 27455764 [TBL] [Abstract][Full Text] [Related]
18. Effect of pH variation and crosslinker absence on the gelling mechanism of high acyl gellan: Morphological, thermal and mechanical approaches. de Souza FS; de Mello Ferreira IL; da Silva Costa MA; da Costa MPM; da Silva GM Carbohydr Polym; 2021 Jan; 251():117002. PubMed ID: 33142570 [TBL] [Abstract][Full Text] [Related]
19. Gellan gum macrobeads loaded with naproxen: The impact of various naturally derived polymers on pH-dependent behavior. Osmałek TZ; Froelich A; Soból M; Milanowski B; Skotnicki M; Kunstman P; Szybowicz M J Biomater Appl; 2018 Jul; 33(1):140-155. PubMed ID: 29874966 [TBL] [Abstract][Full Text] [Related]
20. Rheological investigation of high-acyl gellan gum hydrogel and its mixtures with simulated body fluids. Osmałek TZ; Froelich A; Jadach B; Krakowski M J Biomater Appl; 2018 May; 32(10):1435-1449. PubMed ID: 29534627 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]