These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 31108764)

  • 1. Effect of domestic cooking methods on protein digestibility and mineral bioaccessibility of wild harvested adult edible insects.
    Manditsera FA; Luning PA; Fogliano V; Lakemond CMM
    Food Res Int; 2019 Jul; 121():404-411. PubMed ID: 31108764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of roasting and boiling of quinoa, kiwicha and kañiwa on composition and availability of minerals in vitro.
    Repo-Carrasco-Valencia RA; Encina CR; Binaghi MJ; Greco CB; Ronayne de Ferrer PA
    J Sci Food Agric; 2010 Sep; 90(12):2068-73. PubMed ID: 20582934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comprehensive Review of the Importance of Selected Trace Elements Present in Edible Insects.
    Mabelebele M; Kolobe SD; Malematja E; Sebola NA; Manyelo TG
    Biol Trace Elem Res; 2023 Jul; 201(7):3520-3527. PubMed ID: 36109446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison between boiling and vacuum cooking (sous-vide) in the bioaccessibility of minerals in bovine liver samples.
    da Silva FLF; de Lima JPS; Melo LS; da Silva YSM; Gouveia ST; Lopes GS; Matos WO
    Food Res Int; 2017 Oct; 100(Pt 1):566-571. PubMed ID: 28873722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of heat processing on the nutrient composition, colour, and volatile odour compounds of the long-horned grasshopper Ruspolia differens serville.
    Ssepuuya G; Nakimbugwe D; De Winne A; Smets R; Claes J; Van Der Borght M
    Food Res Int; 2020 Mar; 129():108831. PubMed ID: 32036901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of different cooking methods on the nutrient, and subsequent bioaccessibility and biological activities in Boletus auripes.
    Li X; Yu L; Xie Y; Li C; Fang Z; Hu B; Wang C; Chen S; Wu W; Li X; Zeng Z; Liu Y
    Food Chem; 2023 Mar; 405(Pt A):134358. PubMed ID: 36370574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of domestic processing on the polyphenol content and bioaccessibility in finger millet (Eleusine coracana) and pearl millet (Pennisetum glaucum).
    Hithamani G; Srinivasan K
    Food Chem; 2014 Dec; 164():55-62. PubMed ID: 24996305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of postharvest storage and cooking time on mineral bioaccessibility in common beans.
    Rousseau S; Celus M; Duijsens D; Gwala S; Hendrickx M; Grauwet T
    Food Funct; 2020 Sep; 11(9):7584-7595. PubMed ID: 32821894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutritional properties of green gram germinated in mineral fortified soak water: II. Effect of cooking on total and bioaccessible nutrients and bioactive components.
    Oghbaei M; Prakash J
    J Food Sci Technol; 2017 Mar; 54(4):880-889. PubMed ID: 28303039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioaccessibility of Some Essential Minerals in Three Selected Australian Pulse Varieties Using an In Vitro Gastrointestinal Digestion Model.
    Zhang YY; Panozzo J; Hall MS; Ajlouni S
    J Food Sci; 2018 Nov; 83(11):2873-2881. PubMed ID: 30370926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooking losses of minerals in foods and its nutritional significance.
    Kimura M; Itokawa Y
    J Nutr Sci Vitaminol (Tokyo); 1990; 36 Suppl 1():S25-32; discussion S33. PubMed ID: 2081985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study of mineral composition of beef steak and pork chops depending on the thermal preparation method.
    Goran GV; Tudoreanu L; Rotaru E; Crivineanu V
    Meat Sci; 2016 Aug; 118():117-21. PubMed ID: 27088876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron and zinc bioavailability in common bean (Phaseolus vulgaris) is dependent on chemical composition and cooking method.
    Huertas R; William Allwood J; Hancock RD; Stewart D
    Food Chem; 2022 Sep; 387():132900. PubMed ID: 35398678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Edible Halophytes with Functional Properties: In Vitro Protein Digestibility and Bioaccessibility and Intestinal Absorption of Minerals and Trace Elements from Australian Indigenous Halophytes.
    Srivarathan S; Addepalli R; Adiamo OQ; Kodagoda GK; Phan ADT; Wright ORL; Sultanbawa Y; Osborne S; Netzel ME
    Molecules; 2023 May; 28(10):. PubMed ID: 37241743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Food matrix and cooking process affect mineral bioaccessibility of enteral nutrition formulas.
    Galán MG; Drago SR
    J Sci Food Agric; 2014 Feb; 94(3):515-21. PubMed ID: 23794294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of soy protein and calcium levels on mineral bioaccessibility and protein digestibility from enteral formulas.
    Galán MG; Drago SR
    Plant Foods Hum Nutr; 2014 Sep; 69(3):283-9. PubMed ID: 25079612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of different home-cooking methods on the bioaccessibility of zinc and iron in conventionally bred cowpea (Vigna unguiculata L. Walp) consumed in Brazil.
    Pereira EJ; Carvalho LM; Dellamora-Ortiz GM; Cardoso FS; Carvalho JL
    Food Nutr Res; 2016; 60():29082. PubMed ID: 26945231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of selected elements in two commercially available edible aquatic insects (Coleoptera) and their worldwide updated list.
    Aydoğan Z
    Environ Monit Assess; 2022 Dec; 195(1):249. PubMed ID: 36583810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Edible insects, a valuable protein source from ancient to modern times.
    Liceaga AM
    Adv Food Nutr Res; 2022; 101():129-152. PubMed ID: 35940702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioaccessibility of polyphenols from wheat (Triticum aestivum), sorghum (Sorghum bicolor), green gram (Vigna radiata), and chickpea (Cicer arietinum) as influenced by domestic food processing.
    Hithamani G; Srinivasan K
    J Agric Food Chem; 2014 Nov; 62(46):11170-9. PubMed ID: 25340251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.