These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 31108798)
1. Characterization of three different classes of non-fermented teas using untargeted metabolomics. Zhang Q; Wu S; Li Y; Liu M; Ni K; Yi X; Shi Y; Ma L; Willmitzer L; Ruan J Food Res Int; 2019 Jul; 121():697-704. PubMed ID: 31108798 [TBL] [Abstract][Full Text] [Related]
2. Application of metabolomics profiling in the analysis of metabolites and taste quality in different subtypes of white tea. Yang C; Hu Z; Lu M; Li P; Tan J; Chen M; Lv H; Zhu Y; Zhang Y; Guo L; Peng Q; Dai W; Lin Z Food Res Int; 2018 Apr; 106():909-919. PubMed ID: 29580004 [TBL] [Abstract][Full Text] [Related]
3. Discrimination of Chinese teas with different fermentation degrees by stepwise linear discriminant analysis (S-LDA) of the chemical compounds. Wu QJ; Dong QH; Sun WJ; Huang Y; Wang QQ; Zhou WL J Agric Food Chem; 2014 Sep; 62(38):9336-44. PubMed ID: 25211192 [TBL] [Abstract][Full Text] [Related]
4. White and green teas (Camellia sinensis var. sinensis): variation in phenolic, methylxanthine, and antioxidant profiles. Unachukwu UJ; Ahmed S; Kavalier A; Lyles JT; Kennelly EJ J Food Sci; 2010 Aug; 75(6):C541-8. PubMed ID: 20722909 [TBL] [Abstract][Full Text] [Related]
5. Mass spectrometry-based metabolomics and chemometric analysis of Pu-erh teas of various origins. Wang T; Li X; Yang H; Wang F; Kong J; Qiu D; Li Z Food Chem; 2018 Dec; 268():271-278. PubMed ID: 30064758 [TBL] [Abstract][Full Text] [Related]
6. Phytochemical profiles and antioxidant activities of Chinese dark teas obtained by different processing technologies. Lv HP; Zhang Y; Shi J; Lin Z Food Res Int; 2017 Oct; 100(Pt 3):486-493. PubMed ID: 28964372 [TBL] [Abstract][Full Text] [Related]
7. Application of metabolomics in the analysis of manufacturing type of pu-erh tea and composition changes with different postfermentation year. Ku KM; Kim J; Park HJ; Liu KH; Lee CH J Agric Food Chem; 2010 Jan; 58(1):345-52. PubMed ID: 19916505 [TBL] [Abstract][Full Text] [Related]
8. Phenolic, Carotenoid and Saccharide Compositions of Vietnamese Vu DC; Alvarez S Molecules; 2021 Oct; 26(21):. PubMed ID: 34770903 [TBL] [Abstract][Full Text] [Related]
9. Impact of Fermentation on the Phytochemical Content and Biological Properties of Moringa oleifera Lam. Shoot Teas. Ezekiel Adekoya A; Chika Eze R; Ezechukwu Okpara K; Nwude Eze F Chem Biodivers; 2024 Mar; 21(3):e202301868. PubMed ID: 38251956 [TBL] [Abstract][Full Text] [Related]
10. Study of nutritional value of dried tea leaves and infusions of black, green and white teas from Chinese plantations. Czernicka M; Zaguła G; Bajcar M; Saletnik B; Puchalski C Rocz Panstw Zakl Hig; 2017; 68(3):237-245. PubMed ID: 28895389 [TBL] [Abstract][Full Text] [Related]
11. Predicting the age and type of tuocha tea by fourier transform infrared spectroscopy and chemometric data analysis. Xu L; Deng DH; Cai CB J Agric Food Chem; 2011 Oct; 59(19):10461-9. PubMed ID: 21899255 [TBL] [Abstract][Full Text] [Related]
12. The fortification of tea with sweeteners and milk and its effect on in vitro antioxidant potential of tea product and glutathione levels in an animal model. Korir MW; Wachira FN; Wanyoko JK; Ngure RM; Khalid R Food Chem; 2014 Feb; 145():145-53. PubMed ID: 24128460 [TBL] [Abstract][Full Text] [Related]
13. Bioactivities and sensory evaluation of Pu-erh teas made from three tea leaves in an improved pile fermentation process. Chen YS; Liu BL; Chang YN J Biosci Bioeng; 2010 Jun; 109(6):557-63. PubMed ID: 20471594 [TBL] [Abstract][Full Text] [Related]
14. Total phenol, catechin, and caffeine contents of teas commonly consumed in the United kingdom. Khokhar S; Magnusdottir SG J Agric Food Chem; 2002 Jan; 50(3):565-70. PubMed ID: 11804530 [TBL] [Abstract][Full Text] [Related]
15. Metabolic changes during the pu-erh tea pile-fermentation revealed by a liquid chromatography tandem mass-spectrometry-based metabolomics approach. Chen H; Cui F; Li H; Sheng J; Lv J J Food Sci; 2013 Nov; 78(11):C1665-72. PubMed ID: 24138293 [TBL] [Abstract][Full Text] [Related]
16. High-quality green tea leaf production by artificial cultivation under growth chamber conditions considering amino acids profile. Miyauchi S; Yuki T; Fuji H; Kojima K; Yonetani T; Tomio A; Bamba T; Fukusaki E J Biosci Bioeng; 2014 Dec; 118(6):710-5. PubMed ID: 24915994 [TBL] [Abstract][Full Text] [Related]
17. Sensory characteristics and consumer acceptability of decaffeinated green teas. Lee SM; Lee HS; Kim KH; Kim KO J Food Sci; 2009 Apr; 74(3):S135-41. PubMed ID: 19397734 [TBL] [Abstract][Full Text] [Related]
18. Compositional, nutritional, and functional characteristics of instant teas produced from low- and high-quality black teas. Alasalvar C; Pelvan E; Ozdemir KS; Kocadağlı T; Mogol BA; Paslı AA; Ozcan N; Ozçelik B; Gökmen V J Agric Food Chem; 2013 Aug; 61(31):7529-36. PubMed ID: 23837397 [TBL] [Abstract][Full Text] [Related]
19. Comparison of volatile profiles and bioactive components of sun-dried Pu-erh tea leaves from ancient tea plants on Bulang Mountain measured by GC-MS and HPLC. Zhang WJ; Liu C; Yang RJ; Zheng TT; Zhao MM; Ma L; Yan L J Zhejiang Univ Sci B; 2019 Jul; 20(7):563-575. PubMed ID: 31168970 [TBL] [Abstract][Full Text] [Related]
20. Discrimination of Sri Lankan black teas using fluorescence spectroscopy and linear discriminant analysis. Seetohul LN; Scott SM; O'Hare WT; Ali Z; Islam M J Sci Food Agric; 2013 Jul; 93(9):2308-14. PubMed ID: 23371833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]