These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 31108877)
21. The Effect of Polymeric Nanofibers Used for 3D-Printed Scaffolds on Cellular Activity in Tissue Engineering: A Review. Kharaghani D; Kaffashsaei E; Haider MK; Kim IS Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298414 [TBL] [Abstract][Full Text] [Related]
22. 3D-bioprinting of aortic valve interstitial cells: impact of hydrogel and printing parameters on cell viability. Immohr MB; Dos Santos Adrego F; Teichert HL; Schmidt V; Sugimura Y; Bauer S; Barth M; Lichtenberg A; Akhyari P Biomed Mater; 2022 Nov; 18(1):. PubMed ID: 36322974 [TBL] [Abstract][Full Text] [Related]
23. Nanocellulose-based hydrogels as versatile materials with interesting functional properties for tissue engineering applications. Tamo AK J Mater Chem B; 2024 Aug; 12(32):7692-7759. PubMed ID: 38805188 [TBL] [Abstract][Full Text] [Related]
24. Cell encapsulation in gelatin bioink impairs 3D bioprinting resolution. Schwartz R; Malpica M; Thompson GL; Miri AK J Mech Behav Biomed Mater; 2020 Mar; 103():103524. PubMed ID: 31785543 [TBL] [Abstract][Full Text] [Related]
25. Recent advances and biomedical application of 3D printed nanocellulose-based adhesive hydrogels: A review. Kim H; Dutta SD; Randhawa A; Patil TV; Ganguly K; Acharya R; Lee J; Park H; Lim KT Int J Biol Macromol; 2024 Apr; 264(Pt 2):130732. PubMed ID: 38479658 [TBL] [Abstract][Full Text] [Related]
26. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization. Tran HN; Kim IG; Kim JH; Chung EJ; Noh I Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708 [TBL] [Abstract][Full Text] [Related]
27. 3D bioprinting of tissue constructs employing dual crosslinking of decellularized extracellular matrix hydrogel. Yeleswarapu S; Dash A; Chameettachal S; Pati F Biomater Adv; 2023 Sep; 152():213494. PubMed ID: 37307772 [TBL] [Abstract][Full Text] [Related]
28. Recent advances in nanocellulose based hydrogels: Preparation strategy, typical properties and food application. Lv X; Huang Y; Hu M; Wang Y; Dai D; Ma L; Zhang Y; Dai H Int J Biol Macromol; 2024 Oct; 277(Pt 1):134015. PubMed ID: 39038566 [TBL] [Abstract][Full Text] [Related]
29. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss. Li T; Hou J; Wang L; Zeng G; Wang Z; Yu L; Yang Q; Yin J; Long M; Chen L; Chen S; Zhang H; Li Y; Wu Y; Huang W Acta Biomater; 2023 Jan; 156():21-36. PubMed ID: 36002128 [TBL] [Abstract][Full Text] [Related]
30. Electrically stimulated 3D bioprinting of gelatin-polypyrrole hydrogel with dynamic semi-IPN network induces osteogenesis via collective signaling and immunopolarization. Dutta SD; Ganguly K; Randhawa A; Patil TV; Patel DK; Lim KT Biomaterials; 2023 Mar; 294():121999. PubMed ID: 36669301 [TBL] [Abstract][Full Text] [Related]
31. 3D bioprinting of dual-crosslinked nanocellulose hydrogels for tissue engineering applications. Monfared M; Mawad D; Rnjak-Kovacina J; Stenzel MH J Mater Chem B; 2021 Aug; 9(31):6163-6175. PubMed ID: 34286810 [TBL] [Abstract][Full Text] [Related]
32. Biocompatibility evaluation of a 3D-bioprinted alginate-GelMA-bacteria nanocellulose (BNC) scaffold laden with oriented-growth RSC96 cells. Wu Z; Xie S; Kang Y; Shan X; Li Q; Cai Z Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112393. PubMed ID: 34579912 [TBL] [Abstract][Full Text] [Related]
33. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related]
34. Self-crosslinking hyaluronic acid-carboxymethylcellulose hydrogel enhances multilayered 3D-printed construct shape integrity and mechanical stability for soft tissue engineering. Janarthanan G; Shin HS; Kim IG; Ji P; Chung EJ; Lee C; Noh I Biofabrication; 2020 Sep; 12(4):045026. PubMed ID: 32629438 [TBL] [Abstract][Full Text] [Related]
35. Printability and Cell Viability in Bioprinting Alginate Dialdehyde-Gelatin Scaffolds. Soltan N; Ning L; Mohabatpour F; Papagerakis P; Chen X ACS Biomater Sci Eng; 2019 Jun; 5(6):2976-2987. PubMed ID: 33405600 [TBL] [Abstract][Full Text] [Related]
36. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Askari M; Afzali Naniz M; Kouhi M; Saberi A; Zolfagharian A; Bodaghi M Biomater Sci; 2021 Feb; 9(3):535-573. PubMed ID: 33185203 [TBL] [Abstract][Full Text] [Related]
37. Nanocellulose/PEGDA aerogel scaffolds with tunable modulus prepared by stereolithography for three-dimensional cell culture. Tang A; Li J; Li J; Zhao S; Liu W; Liu T; Wang J; Liu Y J Biomater Sci Polym Ed; 2019 Jul; 30(10):797-814. PubMed ID: 30940007 [TBL] [Abstract][Full Text] [Related]
38. 3D Bioprinting Photo-Crosslinkable Hydrogels for Bone and Cartilage Repair. Mei Q; Rao J; Bei HP; Liu Y; Zhao X Int J Bioprint; 2021; 7(3):367. PubMed ID: 34286152 [TBL] [Abstract][Full Text] [Related]
39. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances. Chakraborty A; Roy A; Ravi SP; Paul A Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056 [TBL] [Abstract][Full Text] [Related]
40. Hyaluronic acid based next generation bioink for 3D bioprinting of human stem cell derived corneal stromal model with innervation. Mörö A; Samanta S; Honkamäki L; Rangasami VK; Puistola P; Kauppila M; Narkilahti S; Miettinen S; Oommen O; Skottman H Biofabrication; 2022 Dec; 15(1):. PubMed ID: 36579828 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]