These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 3110891)

  • 1. Effects of H+ versus CO2 on ventilation in the Pekin duck.
    Dodd GA; Milsom WK
    Respir Physiol; 1987 May; 68(2):189-201. PubMed ID: 3110891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ventilatory roll off during sustained hypercapnia is gender specific in pekin ducks.
    Dodd GA; Scott GR; Milsom WK
    Respir Physiol Neurobiol; 2007 Apr; 156(1):47-60. PubMed ID: 17018266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Respiration and blood gases in the duck exposed to normocapnic and hypercapnic hypoxia.
    Shams H; Scheid P
    Respir Physiol; 1987 Jan; 67(1):1-12. PubMed ID: 3103182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic hypercapnia resets CO2 sensitivity of avian intrapulmonary chemoreceptors.
    Bebout DE; Hempleman SC
    Am J Physiol; 1999 Feb; 276(2):R317-22. PubMed ID: 9950907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On chemoreceptor control of ventilatory responses to CO2 in unanesthetized ducks.
    Milsom WK; Jones DR; Gabbott GR
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Jun; 50(6):1121-8. PubMed ID: 6790493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The behavior of arterial and mixed venous oxygen and carbon dioxide partial pressure and the pH value during and following intubation apnoea. Studies on the occurrence of the Christiansen-Douglas-Haldane effect].
    Merkelbach D; Brandt L; Mertzlufft F
    Anaesthesist; 1993 Oct; 42(10):691-701. PubMed ID: 8250203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiopulmonary control during exercise in the duck.
    Kiley JP; Fedde MR
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Nov; 55(5):1574-81. PubMed ID: 6417085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ventilatory response to inspired CO2 in normal and carotid body-denervated ponies.
    Klein JP; Forster HV; Bisgard GE; Kaminski RP; Pan LG; Hamilton LH
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Jun; 52(6):1614-22. PubMed ID: 6809719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Body temperature and ventilatory responses to CO2 during chronic respiratory acidosis.
    Jennings DB
    J Appl Physiol Respir Environ Exerc Physiol; 1979 Mar; 46(3):491-7. PubMed ID: 438017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ventilation on acid-base balance and oxygenation in low blood-flow states.
    Idris AH; Staples ED; O'Brien DJ; Melker RJ; Rush WJ; Del Duca KD; Falk JL
    Crit Care Med; 1994 Nov; 22(11):1827-34. PubMed ID: 7956288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arterial PCO2 and pH in man during 3 days' exposure to 2.8 kPa CO2 in the inspired gas.
    Nicolaysen G; Ellingsen I; Owe JO; Myhre K
    Acta Physiol Scand; 1989 Mar; 135(3):399-403. PubMed ID: 2494844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ventilatory response to CO2 in birds. I. Measurements in the unanesthetized duck.
    Powell FL; Fedde MR; Gratz RK; Scheid P
    Respir Physiol; 1978 Dec; 35(3):349-59. PubMed ID: 741111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Respiratory, circulatory and acid-base adjustments to hypercapnia in a strictly aquatic and predominantly skin-breathing urodele, Cryptobranchus alleganiensis.
    Boutilier RG; Toews DP
    Respir Physiol; 1981 Nov; 46(2):177-92. PubMed ID: 6801744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in ventilation and breathing pattern produced by changing body temperature and inspired CO2 concentration in turtles.
    Funk GD; Milsom WK
    Respir Physiol; 1987 Jan; 67(1):37-51. PubMed ID: 3103185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Susceptibility of duck and turkey to severe hypercapnic hypoxia.
    Gerritzen MA; Lambooij E; Reimert HG; Spruijt BM; Stegeman JA
    Poult Sci; 2006 Jun; 85(6):1055-61. PubMed ID: 16776475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acid-base balance in ducks (Anas platyrhynchos) during involuntary submergence.
    Shimizu M; Jones DR
    Am J Physiol; 1987 Feb; 252(2 Pt 2):R348-52. PubMed ID: 3101522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of subcutaneous carbon dioxide insufflation on arterial pCO2.
    Rudston-Brown BC; MacLennan D; Warriner CB; Phang PT
    Am J Surg; 1996 May; 171(5):460-3. PubMed ID: 8651384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ventilation response to CO2 in birds. II. Contribution by intrapulmonary CO2 receptors.
    Scheid P; Gratz RK; Powell FL; Fedde MR
    Respir Physiol; 1978 Dec; 35(3):361-72. PubMed ID: 741112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compensatory hypoventilation in metabolic alkalosis.
    Javaheri S; Shore NS; Rose B; Kazemi H
    Chest; 1982 Mar; 81(3):296-301. PubMed ID: 6799256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of hilar nerve denervation on breathing and arterial PCO2 during CO2 inhalation.
    Flynn C; Forster HV; Pan LG; Bisgard GE
    J Appl Physiol (1985); 1985 Sep; 59(3):807-13. PubMed ID: 3932317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.