These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31108971)

  • 1. Modeling the Reflectance Changes Induced by Vapor Condensation in Lycaenid Butterfly Wing Scales Colored by Photonic Nanoarchitectures.
    Márk GI; Kertész K; Piszter G; Bálint Z; Biró LP
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31108971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Vapor Sensing on Single Wing Scales and on Whole Wings of the
    Kertész K; Piszter G; Bálint Z; Biró LP
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30563108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pretreated Butterfly Wings for Tuning the Selective Vapor Sensing.
    Piszter G; Kertész K; Bálint Z; Biró LP
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27618045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature and saturation dependence in the vapor sensing of butterfly wing scales.
    Kertész K; Piszter G; Jakab E; Bálint Z; Vértesy Z; Biró LP
    Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():221-6. PubMed ID: 24863219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical Detection of Vapor Mixtures Using Structurally Colored Butterfly and Moth Wings.
    Piszter G; Kertész K; Bálint Z; Biró LP
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substance specific chemical sensing with pristine and modified photonic nanoarchitectures occurring in blue butterfly wing scales.
    Piszter G; Kertész K; Vértesy Z; Bálint Z; Biró LP
    Opt Express; 2014 Sep; 22(19):22649-60. PubMed ID: 25321733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Color based discrimination of chitin-air nanocomposites in butterfly scales and their role in conspecific recognition.
    Piszter G; Kertész K; Vértesy Z; Bálint Z; Biró LSPT
    Anal Methods; 2011 Jan; 3(1):78-83. PubMed ID: 32938114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wide-gamut structural colours on oakblue butterflies by naturally tuned photonic nanoarchitectures.
    Piszter G; Kertész K; Bálint Z; Biró LP
    R Soc Open Sci; 2023 Apr; 10(4):221487. PubMed ID: 37035285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus.
    Kertész K; Bálint Z; Vértesy Z; Márk GI; Lousse V; Vigneron JP; Rassart M; Biró LP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021922. PubMed ID: 17025487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Color changes upon cooling of Lepidoptera scales containing photonic nanoarchitectures, and a method for identifying the changes.
    Tamáska I; Kértész K; Vértesy Z; Bálint Z; Kun A; Yen S; Biró LP
    J Insect Sci; 2013; 13():87. PubMed ID: 24206534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-color-species correlation in photonic nanoarchitectures occurring in blue lycaenid butterfly scales.
    Piszter G; Kertész K; Vértesy Z; Mark GI; Bálint Z; Biró LP
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8822-8. PubMed ID: 23421294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Order-disorder effects in structure and color relation of photonic-crystal-type nanostructures in butterfly wing scales.
    Márk GI; Vértesy Z; Kertész K; Bálint Z; Biró LP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051903. PubMed ID: 20365002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair.
    Biró LP; Bálint Z; Kertész K; Vértesy Z; Márk GI; Horváth ZE; Balázs J; Méhn D; Kiricsi I; Lousse V; Vigneron JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 1):021907. PubMed ID: 12636715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability and Selective Vapor Sensing of Structurally Colored Lepidopteran Wings Under Humid Conditions.
    Piszter G; Kertész K; Bálint Z; Biró LP
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32521640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breeding
    Piszter G; Bálint Z; Kertész K; Szatmári L; Sramkó G; Biró LP
    Insects; 2023 Aug; 14(8):. PubMed ID: 37623426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the Effect of Reflectance Tuning on Photocatalytic Dye Degradation with Biotemplated ZnO Photonic Nanoarchitectures Based on
    Piszter G; Nagy G; Kertész K; Baji Z; Kovács K; Bálint Z; Horváth ZE; Pap JS; Biró LP
    Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polystyrene Opals Responsive to Methanol Vapors.
    Burratti L; Casalboni M; De Matteis F; Pizzoferrato R; Prosposito P
    Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30154304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural color mechanism in the Papilio blumei butterfly.
    Lo ML; Lee CC
    Appl Opt; 2014 Feb; 53(4):A399-404. PubMed ID: 24514244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural color of a lycaenid butterfly: analysis of an aperiodic multilayer structure.
    Yoshioka S; Shimizu Y; Kinoshita S; Matsuhana B
    Bioinspir Biomim; 2013 Dec; 8(4):045001. PubMed ID: 24262846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral tuning of biotemplated ZnO photonic nanoarchitectures for photocatalytic applications.
    Piszter G; Kertész K; Nagy G; Baji Z; Endre Horváth Z; Bálint Z; Sándor Pap J; Péter Biró L
    R Soc Open Sci; 2022 Jul; 9(7):220090. PubMed ID: 35845847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.